Featured Research

from universities, journals, and other organizations

Penn Team Finds "Molecular Chaperones" Can Halt Progress Of Parkinson's Disease In Fruit Flies And Possibly Humans

Date:
December 21, 2001
Source:
University Of Pennsylvania
Summary:
Using fruit fly models of Parkinson’s disease, researchers at the University of Pennsylvania have found that a class of proteins known as "molecular chaperones" can block the progression of neurodegenerative disease in Drosophila melanogaster. In addition, the group has found evidence that similar pathways may operate in Parkinson’s disease and possibly other neurodegenerative disorders in humans.

PHILADELPHIA – Using fruit fly models of Parkinson’s disease, researchers at the University of Pennsylvania have found that a class of proteins known as "molecular chaperones" can block the progression of neurodegenerative disease in Drosophila melanogaster. In addition, the group has found evidence that similar pathways may operate in Parkinson’s disease and possibly other neurodegenerative disorders in humans.

Related Articles


The findings will be published in the journal Science, as part of its Science Express web site, on Dec. 20. They suggest that activation of molecular chaperones may be an effective approach in the treatment of several human neurodegenerative diseases, senior author Nancy M. Bonini said.

"Our work indicates that up-regulation of a molecular chaperone called Hsp70 can prevent neuronal decay in a fruit fly model of Parkinson’s disease," said Bonini, Penn professor of biology and investigator with the Howard Hughes Medical Institute. "We’ve also found some of the same molecular chaperone pathology in tissue taken from people with Parkinson’s disease, suggesting that these molecules may play the same role in humans as in flies."

Bonini and colleagues in Penn’s School of Medicine also found molecular chaperones in tissue from people afflicted with other neurodegenerative diseases associated with similar protein pathology, including a variant of Alzheimer’s disease.

"These data suggest that altered chaperone activity may be involved in the progression of Parkinson’s disease, and that chaperones such as Hsp70 may be a critical part of the neuronal arsenal that fights neurodegenerative disease," said Pavan K. Auluck, a Penn M.D./Ph.D. student who is lead author on the Science paper.

Parkinson’s disease is the second most common human neurodegenerative disorder, characterized by tremors, postural rigidity and progressive deterioration of dopaminergic neurons in specific areas of the brain. Despite the evolutionary gulf separating humans and fruit flies, neurotoxicity unfolds in a similar manner in both species. Like humans, Drosophila melanogaster experiences neuronal loss upon expression of alpha-synuclein, a protein implicated in the onset of Parkinson’s disease in both species.

"We observed that flies expressing alpha-synuclein had lost about half their dopaminergic neurons in specific brain areas by 20 days of age," Bonini said. "But when alpha-synuclein and Hsp70 were expressed simultaneously, these aged fruit flies exhibited normal numbers of these neurons. In fact, in the presence of Hsp70, the same number of neurons were present at 20 days of age as in flies just one day old."

In another group of flies, the Penn team suppressed the activity of a Drosophila protein analogous to Hsp70, known as Hsc4, and found that these flies showed enhanced sensitivity to alpha-synuclein, with marked neural degeneration at just one day of age. Both Hsp70 and Hsc4 are thought to function by untangling misfolded proteins, mitigating the harmful effects of inappropriately configured proteins.

"These studies emphasize the sensitivity of dopaminergic neurons to chaperone levels and suggest that endogenous chaperones may normally protect against alpha-synuclein toxicity by delaying the onset of degeneration," Auluck, Bonini and their colleagues write in Science.

The Penn researchers studied neural decay among flies expressing alpha-synuclein by tagging and counting numbers of dopaminergic neurons, the same type of neurons that degenerate in Parkinson’s disease in humans.

Auluck and Bonini were joined on the Science paper by H.Y. Edwin Chan, a postdoctoral researcher in the Bonini lab, and John Q. Trojanowski and Virginia M.-Y. Lee, both professors of pathology and laboratory medicine in Penn’s School of Medicine and co-directors of Penn’s Center for Neurodegenerative Disease Research. The work was funded by grants from the David and Lucile Packard Foundation, the National Institute on Aging, the National Institutes of Health and the Alzheimer’s Association.


Story Source:

The above story is based on materials provided by University Of Pennsylvania. Note: Materials may be edited for content and length.


Cite This Page:

University Of Pennsylvania. "Penn Team Finds "Molecular Chaperones" Can Halt Progress Of Parkinson's Disease In Fruit Flies And Possibly Humans." ScienceDaily. ScienceDaily, 21 December 2001. <www.sciencedaily.com/releases/2001/12/011221081755.htm>.
University Of Pennsylvania. (2001, December 21). Penn Team Finds "Molecular Chaperones" Can Halt Progress Of Parkinson's Disease In Fruit Flies And Possibly Humans. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2001/12/011221081755.htm
University Of Pennsylvania. "Penn Team Finds "Molecular Chaperones" Can Halt Progress Of Parkinson's Disease In Fruit Flies And Possibly Humans." ScienceDaily. www.sciencedaily.com/releases/2001/12/011221081755.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Don't Fall For Flu Shot Myths

Don't Fall For Flu Shot Myths

Newsy (Nov. 23, 2014) Misconceptions abound when it comes to your annual flu shot. Medical experts say most people older than 6 months should get the shot. Video provided by Newsy
Powered by NewsLook.com
WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins