Featured Research

from universities, journals, and other organizations

Queen's Researchers Discover Paradox Of Pain Control; Morphine Effectiveness Restored To Between 80 And 90% Of Original Amount

Date:
January 31, 2002
Source:
Queen's University
Summary:
A surprising discovery by researchers at Queen's University could lead to the development of more effective pain-killing drugs, with fewer side effects, for terminally ill patients or people suffering from chronic diseases such as cancer or severe pain due to nerve damage.

(Kingston, ON) -- A surprising discovery by researchers at Queen's University could lead to the development of more effective pain-killing drugs, with fewer side effects, for terminally ill patients or people suffering from chronic diseases such as cancer or severe pain due to nerve damage.

In a paper that appears in the February 2002 Journal of Pharmacology and Experimental Therapeutics, a Queen's team led by Dr. Khem Jhamandas of the Dept. of Pharmacology and Toxicology reports the "paradoxical" findings of their research on opioid drugs such as morphine. The usefulness of these powerful drugs can diminish dramatically after their prolonged use: a phenomenon described as drug tolerance.

Jhamandas and colleagues have found that in vanishingly small doses, opioid antagonists - normally used to block the toxic effects of opioids - instead enhance pain-killing action in experimental models. As well, they discovered that the development of tolerance to morphine was inhibited, and in cases where tolerance had already developed, it was actually reversed.

"When we received the results from the first experiment, I couldn't believe it. Everything we knew up to that point indicated that it shouldn't work - but it did!" says Jhamandas.

Combining an opiate "agonist" like morphine with its "antagonist" - in this case, the drug naltrexone - is a radical approach that was inspired by suggestions in the scientific literature that opiates have both stimulatory and depressant effects, says Jhamandas. Both types of drug act on opiate receptors which are located on nerve cells that transmit pain signals. When activated by morphine, these receptors will powerfully suppress pain.

"We decided it wasn't a question of whether a drug is agonist or antagonist, but rather a question of the dose," he explains. "In higher doses, the antagonists will very effectively destroy the effects of morphine or any other opiate drug, and traditionally they have been used to reverse toxic effects of opioids. But the paradox is that, in extremely small doses, the antagonists augment morphine's analgesic action, while reducing the development of tolerance to it. Where tolerance had already been acquired, the effectiveness of morphine was restored to between 80 and 90% of its original amount."

The latter finding is particularly significant for people with chronic illnesses who require long-term use of these drugs to control their pain. As tolerance to the drugs develops and the dose is subsequently increased, there is a greater potential for harmful side effects. As well, the manifestations of physical dependency - although not a major concern in terminal illness - can also act to increase the pain, notes Jhamandas.

The multidisciplinary Queen's research team - comprising Khem Jhamandas and graduate students Kelly J. Powell and Noura S. Abul-Husn from Pharmcology and Toxicology; and Asha Jhamandas, Mary C. Olmstead, and Richard J. Benninger from Psychology - has discovered that the interaction between morphine and antagonists occurs at specific sites in the spinal cord that transmit pain signals to the brain, and has provided quantitative measures of the observed effects. This research has been funded through the Canadian Institutes of Health Research (CIHR).

Further studies could be linked to the development of more effective pain-killing drugs that require lower dosages, have fewer side effects, and remain effective with repeated use, says Khem Jhamandas. Another area that may benefit is the treatment of neuropathic pain, which results from nerve injury, and responds poorly or not at all to opiates. If the mechanisms contributing to neuropathic pain are similar to the mechanisms contributing to the development of opiate tolerance - as is being suggested by certain studies - it is possible that ultra-low doses of antagonist drugs may help to "unplug" this resistance as well, he suggests.

The next step in this investigation will involve clinical trials to determine if the same results that have been shown in laboratory rats can be produced in people.

"This is exciting because there are so many potent chemicals in the brain that can influence pain, and we're just beginning to comprehend their functions and their promise for yielding treatments providing optimal pain relief," says Jhamandas. "In understanding how pain transmissions occur, we're learning the 'biology of pain' with the objective of making drugs that will work better."

For further information or to arrange an interview, please contact Nancy Dorrance, (613) 533-2869, dorrance@post.queensu.ca or Nancy Marrello, (613) 533-6000, ext. 74040, marrello@post.queensu.ca at Queen's News and Media Services.

Attention broadcasters: Queen's now has facilities to provide broadcast quality audio and video feeds. For television interviews, we can provide a live, real-time double ender from Kingston fibre optic cable. Please call for details.

Editor's Note: The original news release is available here.


Story Source:

The above story is based on materials provided by Queen's University. Note: Materials may be edited for content and length.


Cite This Page:

Queen's University. "Queen's Researchers Discover Paradox Of Pain Control; Morphine Effectiveness Restored To Between 80 And 90% Of Original Amount." ScienceDaily. ScienceDaily, 31 January 2002. <www.sciencedaily.com/releases/2002/01/020131074444.htm>.
Queen's University. (2002, January 31). Queen's Researchers Discover Paradox Of Pain Control; Morphine Effectiveness Restored To Between 80 And 90% Of Original Amount. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2002/01/020131074444.htm
Queen's University. "Queen's Researchers Discover Paradox Of Pain Control; Morphine Effectiveness Restored To Between 80 And 90% Of Original Amount." ScienceDaily. www.sciencedaily.com/releases/2002/01/020131074444.htm (accessed September 23, 2014).

Share This



More Health & Medicine News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Costs Keep Mounting

Ebola Costs Keep Mounting

Reuters - Business Video Online (Sep. 23, 2014) The WHO has warned up to 20,000 people could be infected with Ebola over the next few weeks. As Sonia Legg reports, the implications for the West African countries suffering from the disease are huge. Video provided by Reuters
Powered by NewsLook.com
Ebola Cases Could Reach 1.4 Million Within 4 Months

Ebola Cases Could Reach 1.4 Million Within 4 Months

Newsy (Sep. 23, 2014) Health officials warn that without further intervention, the number of Ebola cases in Liberia and Sierra Leone could reach 1.4 million by January. Video provided by Newsy
Powered by NewsLook.com
WHO: Ebola Cases to Triple in Weeks Without Drastic Action

WHO: Ebola Cases to Triple in Weeks Without Drastic Action

AFP (Sep. 23, 2014) The number of Ebola infections will triple to 20,000 by November, soaring by thousands every week if efforts to stop the outbreak are not stepped up radically, the WHO warned in a study on Tuesday. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
5 Ways Men Can Prevent Most Heart Attacks

5 Ways Men Can Prevent Most Heart Attacks

Newsy (Sep. 23, 2014) No surprise here: A recent study says men can reduce their risk of heart attack by maintaining a healthy lifestyle, which includes daily exercise. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins