Featured Research

from universities, journals, and other organizations

E. Coli Bacteria Make Alzheimer’s-Linked Fibers

Date:
February 1, 2002
Source:
Washington University School Of Medicine
Summary:
Fibers known to be important in Alzheimer’s disease also are produced by bacteria that cause ailments such as urinary tract infections, according to research at Washington University School of Medicine in St. Louis. The finding is described in the February 1 issue of the journal Science.

Fibers known to be important in Alzheimer’s disease also are produced by bacteria that cause ailments such as urinary tract infections, according to research at Washington University School of Medicine in St. Louis. The finding is described in the February 1 issue of the journal Science.

Related Articles


Scott J. Hultgren, Ph.D., the Helen Lehbrink Stoever Professor of Molecular Microbiology, led the study; Matthew R. Chapman, Ph.D., post-doctoral fellow in molecular microbiology was first author.

The scientists found that certain strains of the bacterium Escherichia coli (E. coli) produce amyloid fibers similar to those that can accumulate in the brain to form senile plaques, a hallmark of Alzheimer’s disease. The bacterial fibers, known as curli, form a meshwork around the bacteria, joining them together in clusters or communities known as biofilms. Bacteria in biofilms are more resistant to antibiotics and to the body’s immune defenses.

The discovery marks the first time that amyloid has been found in bacteria. Previously, amyloid was thought to be made only by cells of higher organisms. Even then, their presence was regarded as a mistake, a biological error.

“This is the first example of a dedicated molecular machinery to produce amyloid and thus shows that amyloid production is not always a mistake,” says Hultgren. “This finding gives us a powerful genetic system to study the molecular details of amyloid formation and may allow us to begin designing drugs that will block the formation of amyloid or treat or prevent human amyloid diseases.”

Salmonella bacteria also produce bacterial amyloid or curli, and the genes for curli production exist in other bacteria, as well, says Chapman. The process of curli production is similar to the formation of a snowflake on a dust particle. The particle is a nucleus that triggers the precipitation of ice crystals at its surface, setting off a chain reaction that leads to more ice crystals and growth of the snowflake.

Curli production in E. coli involves two main proteins, CsgA and CsgB. The A protein is released by the bacteria dissolved in the surrounding fluid. The B molecule is embedded in the wall of the bacterium and is exposed to the outside. Like dust particles in snowflake production, each B protein is a nucleus that triggers the precipitation of dissolved A-proteins. As the A proteins pop out of solution they join together and align into curli fibers, with each fiber attached to a B protein.

The finding also raises the important question of whether bacterial infections play some role in amyloid diseases, including Alzheimer’s disease.

Human amyloid diseases also are thought to involve dissolved amyloid proteins that undergo a change in shape and aggregate into fibers, says Hultgren. When those fibers develop in the brain, it leads to Alzheimer’s disease. According to Hultgren, “the question is, what causes the soluble protein in human disease to convert into amyloid fibers? We can now study that mechanism in E. coli.”

Hultgren and Chapman speculate that bacterial infections could play a role in the development of amyloid plaques in Alzheimer’s disease and other amyloid diseases in at least two ways.

“Bacteria might contribute directly to plaque formation through the amyloid they produce,” says Chapman, “or they might contribute indirectly by triggering the precipitation of amyloid precursor proteins already present in the body.” Hultgren and his research team also are working to crystallize the combined A and B proteins to visualize how the two molecules interact.

“Learning that bacteria produce amyloid is a revelation,” says Paul Berg, Cahill Professor of Cancer Research and Biochemistry, Emeritus, at Stanford University School of Medicine and winner of the 1980 Nobel Prize in Chemistry.

“That discovery provides an additional vantage point from which to assess the role of amyloid production and accumulation in Alzheimer's disease and related neuro-pathologies. Hopefully, this model will reveal clues for preventing the devastating formation of amyloid plaques characteristic of those diseases."


Story Source:

The above story is based on materials provided by Washington University School Of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

Washington University School Of Medicine. "E. Coli Bacteria Make Alzheimer’s-Linked Fibers." ScienceDaily. ScienceDaily, 1 February 2002. <www.sciencedaily.com/releases/2002/02/020201080207.htm>.
Washington University School Of Medicine. (2002, February 1). E. Coli Bacteria Make Alzheimer’s-Linked Fibers. ScienceDaily. Retrieved January 30, 2015 from www.sciencedaily.com/releases/2002/02/020201080207.htm
Washington University School Of Medicine. "E. Coli Bacteria Make Alzheimer’s-Linked Fibers." ScienceDaily. www.sciencedaily.com/releases/2002/02/020201080207.htm (accessed January 30, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Friday, January 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Binge-Watching TV Linked To Loneliness

Binge-Watching TV Linked To Loneliness

Newsy (Jan. 29, 2015) Researchers at University of Texas at Austin found a link between binge-watching TV shows and feelings of loneliness and depression. Video provided by Newsy
Powered by NewsLook.com
Signs You Might Be The Passive Aggressive Friend

Signs You Might Be The Passive Aggressive Friend

BuzzFeed (Jan. 28, 2015) "No, I&apos;m not mad. Why, are you mad?" Video provided by BuzzFeed
Powered by NewsLook.com
City Divided: A Look at Model Schools in the TDSB

City Divided: A Look at Model Schools in the TDSB

The Toronto Star (Jan. 27, 2015) Model schools are rethinking how they engage with the community to help enhance the lives of the students and their parents. Video provided by The Toronto Star
Powered by NewsLook.com
Man Saves Pennies For 65 Years

Man Saves Pennies For 65 Years

Rooftop Comedy (Jan. 26, 2015) A man in Texas saved every penny he found for 65 years, and this week he finally cashed them in. Bank tellers at Prosperity Bank in Slaton, Texas were shocked when Ira Keys arrived at their bank with over 500 pounds of loose pennies stored in coffee cans. After more than an hour of sorting and counting, it turned out the 81 year-old was in possession of 81,600 pennies, or $816. And he&apos;s got more at home! Video provided by Rooftop Comedy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins