Featured Research

from universities, journals, and other organizations

Spiral Waves Break Hearts: Importance Of Communication Between Cardiac Cells Is Demonstrated

Date:
February 11, 2002
Source:
American Institute Of Physics
Summary:
Who says physicists don't have heart? In an effort to study the factors that lead to fatal cardiac rhythms, a team of Canadian researchers has shown that the importance of communication applies not only to people, but also to their heart cells. The researchers report their results in this week's issue of the journal Physical Review Letters.

MONTREAL, CANADA (February 5, 2002) -- Who says physicists don't have heart? In an effort to study the factors that lead to fatal cardiac rhythms, a team of Canadian researchers has shown that the importance of communication applies not only to people, but also to their heart cells. The researchers report their results in this week's issue of the journal Physical Review Letters.

Sudden cardiac death kills more than 250,000 people each year in the US alone. Physicists have been studying the important role that electricity plays in the heart's health--and how it may be a culprit in disease.

Electrical impulses regularly circulate through cardiac tissue and cause the heart's muscle fibers to contract. In a healthy heart, these electrical impulses travel smoothly and unobstructed, like a water wave that ripples gently in a pond. However, for reasons that have not been perfectly understood, these waves can sometimes develop into troublesome, whirlpool-like spirals of electrical activity that can circulate through the heart.

Investigating these "spiral waves," scientists at McGill University in Montreal studied chick-embryo cardiac cells grown as a sheet of tissue. In the first two days after this arrangement of cells is created, spiral waves often form in the tissue. When the researchers sprinkled the sheet of cardiac tissue with a drug that impairs communication between the cells, they observed that the rotating spiral waves broke up into multiple rotating spirals.

This breakup of spiral waves in the two-dimensional sheet is believed to be similar to the 3D electrical patterns that cause human hearts to undergo ventricular fibrillation, a potentially fatal cardiac rhythm that often occurs when communication between cells is impaired. In a real-world situation, reduced intercellular communication may be caused by a heart attack or by other cardiac diseases, which can produce diseased or damaged heart tissue.

Developing a simple computer model to explain their experimental findings, the researchers showed that electrical activity in cardiac tissue can spread like a fire in a forest. Like trees, cells "light up," or become electrically active, if enough neighboring cells display a sufficient level of electrical activity. When neighboring cells are able to interact or communicate strongly with one another, electrical waves quickly pass through the tissue, unobstructed; when interactions are weak, wave propagation is completely blocked. At intermediate levels of interaction, electrical waves break up into multiple spiral waves.

Understanding the effects of communication between cells provides insights into the electrical malfunctions that are suspected to lead to heart disorders, and may ultimately suggest strategies for avoiding them. In addition, spiral wave patterns, electrical and otherwise, appear in many other places in nature. The researchers' observations can help to explain the appearance of multiple spiral waves in the corrosion on metal surfaces, the aggregation of slime molds, and visually striking chemical reactions that display ever-changing patterns.

Source: Gil Bub, Alvin Shrier, and Leon Glass, " Spiral Wave Generation in Heterogeneous Excitable Media," 4 February issue of Physical Review Letters.


Story Source:

The above story is based on materials provided by American Institute Of Physics. Note: Materials may be edited for content and length.


Cite This Page:

American Institute Of Physics. "Spiral Waves Break Hearts: Importance Of Communication Between Cardiac Cells Is Demonstrated." ScienceDaily. ScienceDaily, 11 February 2002. <www.sciencedaily.com/releases/2002/02/020206080111.htm>.
American Institute Of Physics. (2002, February 11). Spiral Waves Break Hearts: Importance Of Communication Between Cardiac Cells Is Demonstrated. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2002/02/020206080111.htm
American Institute Of Physics. "Spiral Waves Break Hearts: Importance Of Communication Between Cardiac Cells Is Demonstrated." ScienceDaily. www.sciencedaily.com/releases/2002/02/020206080111.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins