Featured Research

from universities, journals, and other organizations

USC Researchers Define Role Of Protein, Discover Cause Of Chromosome Damage

Date:
March 20, 2002
Source:
University Of Southern California
Summary:
Pinpointing oxygen as the cause of routine chromosome damage and defining the role of a key protein in the repair of that damage are the subjects of two recently published papers from the laboratory of USC/Norris Comprehensive Cancer Center pathologist Michael Lieber, the Rita and Edward Polusky Chair in Basic Cancer Research at the Keck School of Medicine.

Pinpointing oxygen as the cause of routine chromosome damage and defining the role of a key protein in the repair of that damage are the subjects of two recently published papers from the laboratory of USC/Norris Comprehensive Cancer Center pathologist Michael Lieber, the Rita and Edward Polusky Chair in Basic Cancer Research at the Keck School of Medicine.

The first paper was published in the March 5, 2002, issue of Current Biology; the other is slated for the March 22 issue of Cell, but was posted on the journal's Web site on March 1 as part of their "immediate early publication process."

The Cell paper, which will reportedly be on the cover of the March 22 issue, reveals that a protein previously linked to a devastating form of immunodeficiency plays a key role in a pathway by which nuclear DNA is repaired—the same system, in fact, which the immune system uses to create antibodies.

About 15 percent of the cases of human severe combined immunodeficiency syndrome (known colloquially as the "bubble boy" disease) are caused by the mutation of a specific gene and its protein product. In April of 2001, a team of French researchers tracked down that gene, and named it and its product Artemis (after the Greek goddess for the protection of children); they had no idea at all, however, what kind of protein it was, nor what its function might be.

Enter Lieber and graduate student Yunmei Ma. Lieber, Ma and their colleagues from the University of Ulm in Germany, conclusively demonstrated that Artemis is a key protein in the repair of double-stranded DNA breaks, a process called NHEJ (non-homologous DNA end joining). In the NHEJ pathway, explained Lieber, the ends of the broken DNA strands are trimmed and rejoined to one another. "What Artemis does is trim away the damaged parts of the DNA so that the strands can be joined," said Lieber.

Artemis and the NHEJ pathway are so essential, Lieber continued, that mice lacking NHEJ usually die at birth-and those that don't generally lack an immune system entirely and experience accelerated aging. And, as the previous studies have shown, humans with a defective Artemis protein also wind up without any immune defense to speak of. That, says Lieber, is because the immune system creates its defenses by cutting and then rejoining bits of nuclear DNA (the rejoining relies on NHEJ). Without Artemis, the cells can't create the antibodies necessary to go after the myriad pathogenic invaders we regularly encounter.

Of course, being unable to cut and splice DNA can sometimes actually be of benefit. "What we're going to do next," said Ma, the paper’s first author, "is try to screen for drugs that inhibit Artemis, because this might be useful from a cancer therapy standpoint. If we could just give a pulse of drug inhibitor for a while, we might be able to focus the effects of radiation therapy, for instance, by not allowing the cancer cells to repair themselves after being hit with the radiation."

Still, noted Lieber, for normal cells, Artemis and the NHEJ pathway are absolutely critical for survival. And that is because of how exquisitely vulnerable our cells are to DNA damage in the first place. Indeed, he said, all you have to do is take some cells out of the organism in which they live and look at them under a microscope, and you'll find that 5 to 10 percent of them will have at least one broken chromosome.

Normally, of course, the NHEJ pathway works to fix those breaks. But the NHEJ pathway doesn't always function at full capacity. Indeed, a paper published by Lieber, M.D./Ph.D. student Zarir E. Karanjawala, and Norris Cancer Center researcher Chih-Lin Hsieh in 1999 found that in cells where the NHEJ pathway is disabled or missing, the number of cells with at least one chromosome break goes shooting up to 60 percent.

What causes all this breakage? In the March 5 issue of Current Biology, Karanjawala, Lieber, and colleagues say it's the most ubiquitous of sources: oxygen.

Originally, said Karanjawala, they had wondered if the damage might be coming from some environmental source, perhaps from background radiation. But when they began to look more closely, said Karanjawala, they found it was in the very air we breathe. "It's coming from the oxygen," Karanjawala explained. "We found that if you vary the oxygen levels in which cells are grown, the breakage levels of the chromosomes vary as well––the higher the oxygen level, the more breakage you'll see."

The oxygen causes its damage, Lieber said, through oxidative free radicals—highly reactive atoms with an unpaired electron that can rip through our cells "like a bullet."

"Our bodies are being riddled with these bullets every day," explained Lieber, "whether we like it or not. And the sorts of double-strand DNA breaks we were looking at are hard to repair. Even if you put the two ends together the best you can, you usually lose a couple of nucleotides along the way. And so every time we get an oxidative free radical hit, which happens several times per day per cell, we lose a little info. Every time it hits your DNA, you wind up with a little less genetic information than you had when you started the day."

The solution? Frankly, said Lieber, there may be none. "Oxygen—can't live with it, can't live without it," he commented. "We need it to survive, but ultimately, it's also probably what kills us."


Story Source:

The above story is based on materials provided by University Of Southern California. Note: Materials may be edited for content and length.


Cite This Page:

University Of Southern California. "USC Researchers Define Role Of Protein, Discover Cause Of Chromosome Damage." ScienceDaily. ScienceDaily, 20 March 2002. <www.sciencedaily.com/releases/2002/03/020313075022.htm>.
University Of Southern California. (2002, March 20). USC Researchers Define Role Of Protein, Discover Cause Of Chromosome Damage. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2002/03/020313075022.htm
University Of Southern California. "USC Researchers Define Role Of Protein, Discover Cause Of Chromosome Damage." ScienceDaily. www.sciencedaily.com/releases/2002/03/020313075022.htm (accessed August 27, 2014).

Share This




More Matter & Energy News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins