Featured Research

from universities, journals, and other organizations

Sandstone Formation Study May Help Petroleum Industry

Date:
April 8, 2002
Source:
Virginia Tech
Summary:
Virginia Tech geological-sciences Ph.D. candidate Jason Reed is trying to determine what controls sandstone formation and how its resulting reservoir quality can aid oil and gas companies search for potential targets for exploitation.

BLACKSBURG, Va. April 3, 2002 -- Virginia Tech geological-sciences Ph.D. candidate Jason Reed is trying to determine what controls sandstone formation and how its resulting reservoir quality can aid oil and gas companies search for potential targets for exploitation.

Sandstone formation begins with sediment that turns to rock during diagenesis. Diagenesis defines the chemical and physical changes the sediment undergoes during burial, including cementation ("sediment glue") and compaction. "We want to understand what controls sandstone diagenesis," Reed said, "how it turns into sandstone."

Reed, along with professors Kenneth Eriksson and Michal Kowalewski, is evaluating three potential controls on sandstone diagenesis, including initial grain composition, past climate, and the environment of sediment deposition. They sampled Pennsylvanian (time period approximately 300 million years ago) sandstones from the Appalachian basin with known framework grain compositions, climatic histories, and depositional environments to compare and contrast diagenesis from the controlled sample set.

"Sandstone is made predominantly of quartz grains," Reed said. "We are looking at how quartz and an additional grain type—the lithic grain or rock fragment—influence how the sediment eventually turned to sandstone." They also are looking at how the climate, whether humid or arid, affects diagenesis. Finally, they are studying how depositional environments such as marine or stream settings compare in their influence on diagenesis.

After collecting and quantifying data from 70 rock samples under the microscope, Reed analyzed the results using statistical techniques. He and his colleagues found that upper Pennsylvanian samples are predominantly lithic arenites and lower Pennsylvanian samples are mostly quartz rich. Quartz was the most significant burial cement in terms of volume.

Considering the effects of climate, various cements, and environment, they found that quartz cement, most abundant in the lower Pennsylvanian quartz-rich sandstones, had less compaction-related loss of void space that could harbor fluids than the more lithic, upper-Pennsylvanian sandstone. "In view of the volume of quartz cement, the most likely source of silica-rich fluids is deeply buried brines mobilized by thrust loading associated with the building of the Appalachian mountains 250 million years ago," Reed said.

The reason for the work is that sandstone is one of the most important reservoir rocks exploited, Reed said. "It holds fluids—hydrocarbons such as oil and gas or water," he said. "If we can understand what happened during sandstone diagenesis, we can understand how the reservoir is built. If we can understand this, can we say something about the water or petroleum systems? Can we exploit this for gas or oil or water?"

For example, sediment with space between it is an excellent place for finding oil or gas and is a good reservoir, he said. If the space between the sediment is filled with cement during diagenesis, then the sandstone has no place to store oil or gas.

Reed’s work will help scientists understand how climate, environment, and grain control sandstone diagenesis in order to determine whether a particular sandstone could be a possible source of petroleum, natural gas, or water.

Reed, from Parkersburg, W.Va., will present his findings in "Aspects of Pennsylvanian Sandstone Diagenesis, Central Appalachian Basin: Qualitative and Quantitative Analysis" at 1:40 p.m. April 3 during the meetings of the North-Central and Southeastern Sections of the Geological Society of America in Lexington, Ky. The meeting will be at the Hyatt Regency Hotel.


Story Source:

The above story is based on materials provided by Virginia Tech. Note: Materials may be edited for content and length.


Cite This Page:

Virginia Tech. "Sandstone Formation Study May Help Petroleum Industry." ScienceDaily. ScienceDaily, 8 April 2002. <www.sciencedaily.com/releases/2002/04/020403024714.htm>.
Virginia Tech. (2002, April 8). Sandstone Formation Study May Help Petroleum Industry. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2002/04/020403024714.htm
Virginia Tech. "Sandstone Formation Study May Help Petroleum Industry." ScienceDaily. www.sciencedaily.com/releases/2002/04/020403024714.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins