Featured Research

from universities, journals, and other organizations

Helium Imaging Detects Emphysema Changes In Smallest Airways Of Lung

Date:
April 19, 2002
Source:
Washington University School Of Medicine
Summary:
Researchers at Washington University School of Medicine in St. Louis have shown for the first time that an experimental imaging technique can show changes caused by emphysema even in the smallest airways of the lung.

St. Louis, April 18, 2002 — Researchers at Washington University School of Medicine in St. Louis have shown for the first time that an experimental imaging technique can show changes caused by emphysema even in the smallest airways of the lung.

The technique, known as helium-3 diffusion magnetic resonance imaging (3He diffusion MRI) is more sensitive than computed tomography (CT) or any other imaging method currently available for examining the lung. The findings were published in the Proceedings of the National Academy of Sciences. The lead author is Dmitriy A. Yablonskiy, Ph.D., a professor of physics and an assistant professor of radiology at the School of Medicine’s Mallinckrodt Institute of Radiology.

“Our findings suggest this may be a new means for the early detection of emphysema by demonstrating the enlargement of the air spaces in the lung,” says Stephen S. Lefrak, M.D., professor of medicine and a co-author of the paper. “I suspect it also will help in understanding the development, evolution, progression and physiological effects of many lung diseases including emphysema, asthma and perhaps pulmonary fibrosis.”

Joel D. Cooper, M.D., Evarts A. Graham Professor of Surgery and head of the Division of Cardiothoracic Surgery added, “This technique may well help us refine our selection criteria and better predict the outcome of emphysema patients undergoing lung-volume reduction surgery.” Lung reduction surgery involves the removal of the most diseased areas of the lung in select patients.

3He diffusion MRI uses a nonradioactive and highly polarized – hyperpolarized – form of helium gas. Hyperpolarizing the gas, which is done using lasers, makes the helium detectable by MRI.

To perform the technique, a patient in an MRI machine inhales the gas and holds his or her breath for ten seconds. The resulting image shows how far the atoms of helium travel, or diffuse, within the lungs during a period of two thousandths of a second. The method reveals the distance traveled both along and across the airways.

These distances are recorded as colors ranging from red (the smallest distances) to violet (the largest distances). This information also indicates the physical diameter of the airways and of the alveoli.

If a large space is available, the helium molecules can move freely and travel relatively far. This is the case in the trachea, the relatively large tube that carries air from the mouth and nose into the chest and shows up as violet when imaged. In small airways within healthy lungs, the bronchioles and alveoli, the helium atoms have little room to move. These areas show up in the image as red or deep orange.

Emphysema progressively destroys the walls of the alveoli, the smallest spaces of the lung and the area where the blood releases its load of carbon dioxide and takes up a fresh supply of oxygen. The disease results in a loss of lung elasticity and an enlargement of alveolar spaces. The larger space gives the helium atoms more room for movement.

“Diffusion in emphysemic lungs can be five to six times greater than in normal lungs because of the enlargement of the airways,” says Yablonskiy. “That’s why this technique is sensitive; it tells us the radius of the airways.”

“It is a powerful method, telling us about lung structure on the 0.1 to 0.5-mm scale, too small for us just to take a picture of them,” added Mark S. Conradi, Ph.D., professor of physics and another co-author of the paper.

The study reports the use of the technique in two healthy patients and four with severe emphysema.

The findings demonstrate the method’s ability to follow the dynamics of lung destruction by examining the variations in damage within each patient as well as between patients. For example, the diffusion pattern in one patient showed an area of moderate emphysema, with a mean airway radius of 0.52 mm (compared to a mean radius of about 0.37 mm in normal lungs). Here, the transverse diffusion of gas was nearly 100 percent greater than in normal lungs. An area of severe emphysema in the same patient showed a mean airway radius of more than 1 mm and transverse movement of helium four times that of normal lungs.

###

Yablonskiy, DA, Sukstanskii AL, Leawoods JC, Gierada DS, Bretthorst GL, Lefrak SS, Cooper JD, Conradi MS. Quantitative in vivo assessment of lung microstructure at the alveolar level with hyperpolarized 3He diffusion MRI. Proceedings of the National Academy of Sciences, 99(5), 3111-3116. Mar. 5, 2002.

This research was supported by a Scholar Award from the Radiology Society of North America.


Story Source:

The above story is based on materials provided by Washington University School Of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

Washington University School Of Medicine. "Helium Imaging Detects Emphysema Changes In Smallest Airways Of Lung." ScienceDaily. ScienceDaily, 19 April 2002. <www.sciencedaily.com/releases/2002/04/020419064236.htm>.
Washington University School Of Medicine. (2002, April 19). Helium Imaging Detects Emphysema Changes In Smallest Airways Of Lung. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2002/04/020419064236.htm
Washington University School Of Medicine. "Helium Imaging Detects Emphysema Changes In Smallest Airways Of Lung." ScienceDaily. www.sciencedaily.com/releases/2002/04/020419064236.htm (accessed August 1, 2014).

Share This




More Health & Medicine News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

House Republicans Vote to Sue Obama Over Healthcare Law

House Republicans Vote to Sue Obama Over Healthcare Law

Reuters - US Online Video (July 31, 2014) The Republican-led House of Representatives votes to sue President Obama, accusing him of overstepping his executive authority in making changes to the Affordable Care Act. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Despite Health Questions, E-Cigs Are Beneficial: Study

Despite Health Questions, E-Cigs Are Beneficial: Study

Newsy (July 31, 2014) Citing 81 previous studies, new research out of London suggests the benefits of smoking e-cigarettes instead of regular ones outweighs the risks. Video provided by Newsy
Powered by NewsLook.com
Dangerous Bacteria Kills One in Florida

Dangerous Bacteria Kills One in Florida

AP (July 31, 2014) Sarasota County, Florida health officials have issued a warning against eating raw oysters and exposing open wounds to coastal and inland waters after a dangerous bacteria killed one person and made another sick. (July 31) Video provided by AP
Powered by NewsLook.com
Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins