Featured Research

from universities, journals, and other organizations

Rice Physicists Observe New "Atom Wave" Phenomena; Trapped Atoms From A Bose-Einstein Condensate Form "Soliton Train"

Date:
May 3, 2002
Source:
Rice University
Summary:
Rice University physicists have shown for the first time that ultracold atoms can form bright "solitons," localized bundles of waves that maintain a constant shape as they propagate. Solitons of light are used in ultra-high speed optical communication networks because they can carry data over great distances without the use of signal boosters. At the atomic level, solitons could further the development of new forms of atom lasers.

HOUSTON—MAY 1, 2002 — Rice University physicists have shown for the first time that ultracold atoms can form bright "solitons," localized bundles of waves that maintain a constant shape as they propagate. Solitons of light are used in ultra-high speed optical communication networks because they can carry data over great distances without the use of signal boosters. At the atomic level, solitons could further the development of new forms of atom lasers. The research is described in the May 9 issue of Nature.

The experiments involve a Bose-Einstein condensate, or BEC, a collection of atoms that is cooled to the point where the mysterious and counterintuitive forces of quantum mechanics take over, causing the atoms to lose their individual identities and behave not like individual particles, but as a single, collective wave. To create a BEC, physicists tightly confine atoms in magnetic fields and cool them using lasers and evaporation until they reach a temperature that is about one billion times colder than room temperature.

Like any confined wave, Bose-Einstein condensates are fragile and tend to disperse quickly when released from confinement. In the latest experiments, Rice scientists trapped atoms from a BEC in a narrow beam of light that only allowed the atoms to move in a single file line. By causing the atoms to attract each other, the physicists were able to create atomic solitons, atom waves whose self-attraction balances perfectly with their tendency to disperse. Solitons show up in a variety of other wave phenomena, but the first observation was of a non-spreading water wave in a canal in Scotland in 1834.

In the world of optics, solitons of light have been created by sending light pulses down specially designed optical fibers. Unlike typical data in telecommunications networks, which must be reinforced with "repeaters" that boost the signal at regular intervals, these signals don’t disperse and become weaker as they travel down the fiber.

In the latest experiments, Rice’s BEC researchers observed atomic "soliton trains," groups of as many as 15 solitons lined up end-to-end. These solitons were observed to propagate for several seconds, an eternity for a localized wave bundle, without spreading.

The techniques that are being developed to control matter in BEC experiments could eventually be used to perform extremely precise measurements. For example, the same principle that makes lasers useful in interferometric fiber-optic gyroscopes could be applied with atom lasers to form instruments that are millions or perhaps billions of times more sensitive.

"Forty years ago, no one imagined that lasers would be used to play music in our cars or scan our food at the grocery store checkout," said principal investigator Randall G. Hulet, Fayez Sarofim Professor of Physics and Astronomy. "BEC researchers are in a similar situation. We’re getting our first glimpse of a wondrous and sometimes surprising set of dynamic quantum phenomena, and there’s no way to know exactly what may come of it."

In 1995, Hulet’s research group created the first BEC from lithium atoms, something some theorists had predicted could not be done because of the attractive nature of the atoms. Further study of this novel BEC system led to the direct observation of condensate growth and collapse. This provided new insights into weakly interacting Bose gases and laid the groundwork for the soliton experiments just completed.

The current research is described in detail in "Formation and Propagation of Matter Wave Soliton Trains," by Kevin E. Strecker, Guthrie B. Partridge, Andrew G. Truscott, and Randall G. Hulet. Strecker and Partridge are graduate students at Rice. Truscott, formerly a post-doctoral researcher at Rice, is now on the faculty of the Australian National University in Canberra.

Hulet’s research is sponsored by the National Science Foundation, the National Aeronautics and Space Administration, the Office of Naval Research and the Welch Foundation.


Story Source:

The above story is based on materials provided by Rice University. Note: Materials may be edited for content and length.


Cite This Page:

Rice University. "Rice Physicists Observe New "Atom Wave" Phenomena; Trapped Atoms From A Bose-Einstein Condensate Form "Soliton Train"." ScienceDaily. ScienceDaily, 3 May 2002. <www.sciencedaily.com/releases/2002/05/020502072745.htm>.
Rice University. (2002, May 3). Rice Physicists Observe New "Atom Wave" Phenomena; Trapped Atoms From A Bose-Einstein Condensate Form "Soliton Train". ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2002/05/020502072745.htm
Rice University. "Rice Physicists Observe New "Atom Wave" Phenomena; Trapped Atoms From A Bose-Einstein Condensate Form "Soliton Train"." ScienceDaily. www.sciencedaily.com/releases/2002/05/020502072745.htm (accessed July 22, 2014).

Share This




More Matter & Energy News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins