Featured Research

from universities, journals, and other organizations

Cell Transplantation Delivers Key Protein To Mice With Muscle-Wasting Condition Similar To Duchenne Muscular Dystrophy

Date:
May 21, 2002
Source:
University Of Pittsburgh Medical Center
Summary:
Transplanting a unique population of muscle stem cells from healthy newborn mice delivers dystrophin, a key protein for muscle function, into mice born with a genetic muscle-wasting disease similar to Duchenne muscular dystrophy, Johnny Huard, Ph.D., and his colleagues report in the May 27 issue of the Journal of Cell Biology.

PITTSBURGH, May 21 – Transplanting a unique population of muscle stem cells from healthy newborn mice delivers dystrophin, a key protein for muscle function, into mice born with a genetic muscle-wasting disease similar to Duchenne muscular dystrophy, Johnny Huard, Ph.D., and his colleagues report in the May 27 issue of the Journal of Cell Biology. The text is available online now at http://www.jcb.org.

“Studying the behavior of these cells after transplant, we found some very exciting things,” said Dr. Huard, who is an associate professor of orthopaedic surgery, molecular genetics, biochemistry and bioengineering at the University of Pittsburgh School of Medicine and director of the Growth and Development Laboratory at Children’s Hospital of Pittsburgh. “Not only did the donor cells continue to grow and make dystrophin in the recipient, but they also apparently failed to provoke an immune response, which would protect them from rejection.”

Dr. Huard, Zhuqing Qu-Peterson, Ph.D., and other colleagues from the University of Pittsburgh and the University of Bonn, Germany, isolated stem cells from the muscle of healthy newborn mice that had been grown in culture.

Using a technique called pre-plating, the dividing cells were culled into differing groups and eventually winnowed to what Dr. Huard calls muscle-derived stem cells or MDSC. These cells were injected into the muscles of “mdx” mice, a rodent model for Duchenne muscular dystrophy. In humans, this disease causes muscle weakness and early death because of respiratory or cardiac failure.

Dr. Huard and his colleagues are working on the transplantation of MDS cells as a potential approach to deliver dystrophin to the muscles of mdx mice. Less refined muscle cells, called EP (early plate) cells, also were transplanted into mdx mice for comparison.

“These muscle-derived stem cells appear to be pluripotent; they can differentiate into muscle, neural and vascular lineages both in vitro and in vivo,” said Dr. Huard, who also is deputy director of the McGowan Institute for Regenerative Medicine at the University of Pittsburgh. “In addition, we were able to use a gene marker to prove that these cells were incorporated into the musculature of mdx mice. The cells continued to proliferate, make dystrophin and improve muscle regeneration.”

MDS cells were “tagged” with the LacZ reporter gene and traced, Dr. Huard explained, adding that these marked cells were found in blood vessels and peripheral nerve tissue as well as in muscle tissue. Researchers also looked for evidence of immune system activity at the transplant sites and monitored cell activity for three months.

“These results suggest that the improved transplantation capacity of the MDSC may be attributed to their inability to trigger infiltration of activated lymphocytes … which would eventually play a role in immune rejection of the transplanted cells,” Dr. Huard wrote.

While these results are promising, further investigation is necessary. Scientists still have not identified a way to deliver the missing dystrophin gene systemically to achieve a global improvement in muscle function.

“We need to find out the best way to make these cells grow and become the right kinds of cells, as well as to control the process,” said Dr. Huard. “But it is an important step in the development of muscle cell transplantation for Duchenne muscular dystrophy patients.”

In addition to Drs. Huard and Qu-Peterson, other authors are Bridget Deasy, Ron Jankowski, Makato Ikezawa, M.D., James Cummins, Ryan Pruchnic, John Mytinger, Baohong Cao, M.D., Ph.D., and Charley Gates, all of the University of Pittsburgh; and Anton Wernig, M.D., Ph.D., of the University of Bonn, Germany.


Story Source:

The above story is based on materials provided by University Of Pittsburgh Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

University Of Pittsburgh Medical Center. "Cell Transplantation Delivers Key Protein To Mice With Muscle-Wasting Condition Similar To Duchenne Muscular Dystrophy." ScienceDaily. ScienceDaily, 21 May 2002. <www.sciencedaily.com/releases/2002/05/020521072736.htm>.
University Of Pittsburgh Medical Center. (2002, May 21). Cell Transplantation Delivers Key Protein To Mice With Muscle-Wasting Condition Similar To Duchenne Muscular Dystrophy. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2002/05/020521072736.htm
University Of Pittsburgh Medical Center. "Cell Transplantation Delivers Key Protein To Mice With Muscle-Wasting Condition Similar To Duchenne Muscular Dystrophy." ScienceDaily. www.sciencedaily.com/releases/2002/05/020521072736.htm (accessed September 17, 2014).

Share This



More Health & Medicine News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Obama Orders Military Response to Ebola

Obama Orders Military Response to Ebola

AP (Sep. 16, 2014) Calling the Ebola outbreak in West Africa a potential threat to global security, President Barack Obama is ordering 3,000 U.S. military personnel to the stricken region amid worries that the outbreak is spiraling out of control. (Sept. 16) Video provided by AP
Powered by NewsLook.com
UN: 20,000 Could Be Infected With Ebola by Year End

UN: 20,000 Could Be Infected With Ebola by Year End

AFP (Sep. 16, 2014) Nearly $1.0 billion dollars is needed to fight the Ebola outbreak raging in west Africa, the United Nations say, warning that 20,000 could be infected by year end. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Obama: Ebola Outbreak Threat to Global Security

Obama: Ebola Outbreak Threat to Global Security

AP (Sep. 16, 2014) President Obama is ordering U.S. military personnel to West Africa to deal with the Ebola outbreak, which is he calls a potential threat to global security. (Sept. 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins