Featured Research

from universities, journals, and other organizations

Breakthrough In Crystalline Oxide Film Technology

Date:
July 5, 2002
Source:
Oregon State University
Summary:
Researchers at Oregon State University have made a significant breakthrough in the technology to produce crystalline oxide films, which play roles in semiconductor chips, flat panel displays and many other electronic products.

CORVALLIS, Ore. – Researchers at Oregon State University have made a significant breakthrough in the technology to produce crystalline oxide films, which play roles in semiconductor chips, flat panel displays and many other electronic products.

In a report to be published Friday in the journal Science, the OSU scientists explain a way to create these crystalline thin films at temperatures far lower than those used currently, and with no need to be produced in a vacuum as the current technology usually requires.

This fundamental advance may eventually open up important new applications in the electronics, computer and high technology industries, making new products possible or lowering the cost of those already being created.

The study was a joint effort of scientists in the Department of Chemistry and Department of Electrical and Computer Engineering at OSU, in collaboration with two private technology companies, Hewlett Packard and ReyTech Corp. of Bend, Ore. The research was supported by Hewlett Packard and $1.25 million in grants from the National Science Foundation. OSU has applied for a patent on the new advance.

"This is a general method of producing oxide films that could bring down manufacturing costs tremendously and change the way many electronic or photonic products are created," said Douglas Keszler, an OSU professor of chemistry. "It's a real breakthrough that could shake up a few people in the high tech and thin film industries. There should be quite a bit of interest."

According to Keszler, many electronic or photonic devices contain crystalline oxide films that can conduct electricity, serve as insulators or have desirable optical properties. To achieve crystallinity, it's usually necessary to manufacture the films in high vacuum conditions and at extraordinarily high temperatures of more than 1,800 degrees. Sophisticated equipment is needed to achieve both the vacuum condition and high temperature, and the process is expensive.

By contrast, the new approach discovered by OSU scientists and engineers uses a simple, water-based chemistry to deposit and crystallize these films at dramatically lower temperatures, about 250 degrees, or just slightly hotter than boiling water. No vacuum is necessary.

"We found that you can take certain materials that contain water and let them dehydrate slowly and at low temperatures, and still observe crystallinity," Keszler said. "Processing is done in a bath, rather than requiring expensive technology, vacuums and very high temperatures. There has never been a way before to both deposit and crystallize electronic or photonic films at such low temperatures."

The very need for such high manufacturing temperatures, the OSU researchers said, has in fact precluded the use of these electronic thin films on some applications, such as plastics, that would melt and be destroyed by temperatures of 1,800 degrees. And the new approach could also facilitate cheaper mass production of some products, whereas in the past the need for sophisticated technology and space constraints might have limited manufacturers to making one product or a few at a time.

According to John Wager, a co-author on the study and professor of electrical and computer engineering at OSU, it may take further research and increased collaboration with private industry to implement the new approach in large-scale commercial manufacturing processes. But the possibilities seem promising, he said.

"It's always difficult to predict exactly how a new technology will be received and used in manufacturing products," Wager said. "But clearly this offers some ways to reduce costs or create new products that never were possible before."

The OSU researchers said it may now be more practical to place electronic devices on a plastic substrate, such as a credit card or for other uses. There may be applications with flat panel displays, insulating glass, storage batteries, use of these films as a corrosion barrier, in liquid crystal displays, or in some of the exciting new products made possible by transparent electronics.

And the new technology could be developed to play a key role in the semiconductor industry, Wager said.

"Everything in semiconductor manufacturing is moving to lower temperature processing in order to create smaller devices," Wager said. "Atoms move around too much at high temperatures. This new approach to creating crystalline thin films could find practical, mass production applications in semiconductor chips once the technology is fully developed to its potential."

"We expect a fair amount of interest," Wager said.


Story Source:

The above story is based on materials provided by Oregon State University. Note: Materials may be edited for content and length.


Cite This Page:

Oregon State University. "Breakthrough In Crystalline Oxide Film Technology." ScienceDaily. ScienceDaily, 5 July 2002. <www.sciencedaily.com/releases/2002/07/020705090714.htm>.
Oregon State University. (2002, July 5). Breakthrough In Crystalline Oxide Film Technology. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2002/07/020705090714.htm
Oregon State University. "Breakthrough In Crystalline Oxide Film Technology." ScienceDaily. www.sciencedaily.com/releases/2002/07/020705090714.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins