Featured Research

from universities, journals, and other organizations

New Horizons Of Nerve Repair: Biomedical Engineer Trips Up Proteins In Nerve Regeneration System

Date:
July 26, 2002
Source:
Washington University In St. Louis
Summary:
Shelly Sakiyama-Elbert, Ph.D., assistant professor of biomedical engineering at Washington University in St. Louis, has designed a system that employs a nerve guide tube filled with a gel containing growth factor proteins that stimulate nerve regeneration. Also part of the package are strategically placed sugars and peptides for binding in the gel matrix. The system has promoted peripheral nerve regeneration in preliminary rat studies.

It's sticky, it's a gel, it comes in a tube, but this is no greasy kids' stuff. Rather, it's a novel delivery system for peripheral nerve regeneration that could have implications for successful stem cell delivery and spinal cord repair.

Related Articles


Shelly Sakiyama-Elbert, Ph.D., assistant professor of biomedical engineering at Washington University in St. Louis, has designed a system that employs a nerve guide tube filled with a gel containing growth factor proteins that stimulate nerve regeneration. Also part of the package are strategically placed sugars and peptides for binding in the gel matrix. The system has promoted peripheral nerve regeneration in preliminary rat studies.

The clinical Gold Standard for peripheral nerve regeneration involves taking a nerve from a donor site on the injured person's body and sewing the donor nerve in between the two ends of the injured nerve. Though the nerve is dead, it provides a pathway that can guide the regeneration of the injured nerve. This is problematic because it creates an injury to be addressed at the donor site, and there is a limit to the amount of donor tissue you can use from a patient. Furthermore, there is no guarantee that the donated nerve will come to life in a new site. Another alternative is the use of cadaver nerves, which runs a risk of rejection.

Sakiyama-Elbert, working with famed plastic surgeon Susan Mackinnon ,M.D., Syd. M. and Robert H. Shoenberg Professor of Surgery of the Washington University Medical School, places exogenous sticky material capable of binding growth factors throughout the gel, causing the growth factor proteins to remain in the gel for months because they keep tripping over the sticky material. These binding sites can be tuned according to how fast the drug needs to be released for successful regeneration. Timed release is a key component of her system, because a real limitation is having the proteins diffuse out in a day or two, which is the case with many currently used systems.

Sakiyama-Elbert recently presented these results at a conference hosted by the Plastic Surgery Research Council, April 18-20, in Boston. Her work is sponsored by the Whitaker Foundation.

Another approach to peripheral nerve regeneration that Sakiyama-Elbert is testing involves creating her own protein consisting of a growth factor, and two different domains, a cross-linking site and a substrate for an enzyme that cleaves the growth factor at just the time a regenerating nerve cell would be migrating through the matrix. This cell-activated drug delivery system is also incorporated into a gel and delivered from a nerve guide tube, and it's a great example of a new area known as biologically responsible materials.

Stem cells for spinal cord repair

She also is one of very few researchers looking into matrixes for spinal cord damage, such as the kind that actor Christopher Reeves suffered years ago and from which he is not recovered. She is collaborating with John McDonald, M.D., Ph.D., assistant professor of neurobiology at the Washington University School of Medicine. McDonald already has treated spinal cord injuries in rats with embryonic stem cells; the problem is that most of the stem cells died after transplantation. Sakiyama-Elbert is hopeful that her matrix/tube delivery system will allow 50 to 75 percent survival of the stem cells by providing a more hospitable environment for the cells immediately after transplantation.

"The overall goal of this direction of my research is to apply novel bioengineering technology to allow controlled release of growth factors from scaffolds that facilitate the regeneration of adult spinal cord axons through and beyond spinal cord lesions," Sakiyama-Elbert said. "The scaffolds are drug-delivery systems consisting of protein matrices containing growth factors that are released in a sustained manner during tissue regeneration."

The scaffolds can be further modified by adding embryonic stem cells during polymerization, a process where small molecules are combined together to form larger ones.

"The embryonic stem cells can repopulate the injured spinal cord and serve as a source of nerve growth factors during regeneration," Sakiyama-Elbert explained.


Story Source:

The above story is based on materials provided by Washington University In St. Louis. Note: Materials may be edited for content and length.


Cite This Page:

Washington University In St. Louis. "New Horizons Of Nerve Repair: Biomedical Engineer Trips Up Proteins In Nerve Regeneration System." ScienceDaily. ScienceDaily, 26 July 2002. <www.sciencedaily.com/releases/2002/07/020725082253.htm>.
Washington University In St. Louis. (2002, July 26). New Horizons Of Nerve Repair: Biomedical Engineer Trips Up Proteins In Nerve Regeneration System. ScienceDaily. Retrieved March 5, 2015 from www.sciencedaily.com/releases/2002/07/020725082253.htm
Washington University In St. Louis. "New Horizons Of Nerve Repair: Biomedical Engineer Trips Up Proteins In Nerve Regeneration System." ScienceDaily. www.sciencedaily.com/releases/2002/07/020725082253.htm (accessed March 5, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, March 5, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Bupa Eyes India Healthcare Opportunities

Bupa Eyes India Healthcare Opportunities

Reuters - Business Video Online (Mar. 5, 2015) — Bupa is hoping to expand in India&apos;s fast-growing health insurance market, once a rule change on foreign investment is implemented. The British private healthcare group&apos;s CEO tells Grace Pascoe why it&apos;s so keen on the new opportunity. Video provided by Reuters
Powered by NewsLook.com
Doctor in Your Pocket Is Getting Smarter

Doctor in Your Pocket Is Getting Smarter

Reuters - Business Video Online (Mar. 5, 2015) — Mobile apps are turning smartphones into a personal doctors, with users able to measure heart rate, blood pressure and even blood sugar. But will it change our behaviour? Ivor Bennett reports from the Mobile World Congress in Barcelona. Video provided by Reuters
Powered by NewsLook.com
AbbVie Inks $21B Deal To Buy Cancer Drugmaker Pharmacyclics

AbbVie Inks $21B Deal To Buy Cancer Drugmaker Pharmacyclics

Newsy (Mar. 5, 2015) — AbbVie announced Wednesday it will buy cancer drugmaker Pharmacyclics in a $21 billion deal. Video provided by Newsy
Powered by NewsLook.com
Adults Only Get The Flu Twice A Decade, Researchers Say

Adults Only Get The Flu Twice A Decade, Researchers Say

Newsy (Mar. 4, 2015) — Researchers found adults only get the flu about once every five years. Scientists analyzed how a person&apos;s immunity builds up over time as well. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins