Featured Research

from universities, journals, and other organizations

New Horizons Of Nerve Repair: Biomedical Engineer Trips Up Proteins In Nerve Regeneration System

Date:
July 26, 2002
Source:
Washington University In St. Louis
Summary:
Shelly Sakiyama-Elbert, Ph.D., assistant professor of biomedical engineering at Washington University in St. Louis, has designed a system that employs a nerve guide tube filled with a gel containing growth factor proteins that stimulate nerve regeneration. Also part of the package are strategically placed sugars and peptides for binding in the gel matrix. The system has promoted peripheral nerve regeneration in preliminary rat studies.

It's sticky, it's a gel, it comes in a tube, but this is no greasy kids' stuff. Rather, it's a novel delivery system for peripheral nerve regeneration that could have implications for successful stem cell delivery and spinal cord repair.

Shelly Sakiyama-Elbert, Ph.D., assistant professor of biomedical engineering at Washington University in St. Louis, has designed a system that employs a nerve guide tube filled with a gel containing growth factor proteins that stimulate nerve regeneration. Also part of the package are strategically placed sugars and peptides for binding in the gel matrix. The system has promoted peripheral nerve regeneration in preliminary rat studies.

The clinical Gold Standard for peripheral nerve regeneration involves taking a nerve from a donor site on the injured person's body and sewing the donor nerve in between the two ends of the injured nerve. Though the nerve is dead, it provides a pathway that can guide the regeneration of the injured nerve. This is problematic because it creates an injury to be addressed at the donor site, and there is a limit to the amount of donor tissue you can use from a patient. Furthermore, there is no guarantee that the donated nerve will come to life in a new site. Another alternative is the use of cadaver nerves, which runs a risk of rejection.

Sakiyama-Elbert, working with famed plastic surgeon Susan Mackinnon ,M.D., Syd. M. and Robert H. Shoenberg Professor of Surgery of the Washington University Medical School, places exogenous sticky material capable of binding growth factors throughout the gel, causing the growth factor proteins to remain in the gel for months because they keep tripping over the sticky material. These binding sites can be tuned according to how fast the drug needs to be released for successful regeneration. Timed release is a key component of her system, because a real limitation is having the proteins diffuse out in a day or two, which is the case with many currently used systems.

Sakiyama-Elbert recently presented these results at a conference hosted by the Plastic Surgery Research Council, April 18-20, in Boston. Her work is sponsored by the Whitaker Foundation.

Another approach to peripheral nerve regeneration that Sakiyama-Elbert is testing involves creating her own protein consisting of a growth factor, and two different domains, a cross-linking site and a substrate for an enzyme that cleaves the growth factor at just the time a regenerating nerve cell would be migrating through the matrix. This cell-activated drug delivery system is also incorporated into a gel and delivered from a nerve guide tube, and it's a great example of a new area known as biologically responsible materials.

Stem cells for spinal cord repair

She also is one of very few researchers looking into matrixes for spinal cord damage, such as the kind that actor Christopher Reeves suffered years ago and from which he is not recovered. She is collaborating with John McDonald, M.D., Ph.D., assistant professor of neurobiology at the Washington University School of Medicine. McDonald already has treated spinal cord injuries in rats with embryonic stem cells; the problem is that most of the stem cells died after transplantation. Sakiyama-Elbert is hopeful that her matrix/tube delivery system will allow 50 to 75 percent survival of the stem cells by providing a more hospitable environment for the cells immediately after transplantation.

"The overall goal of this direction of my research is to apply novel bioengineering technology to allow controlled release of growth factors from scaffolds that facilitate the regeneration of adult spinal cord axons through and beyond spinal cord lesions," Sakiyama-Elbert said. "The scaffolds are drug-delivery systems consisting of protein matrices containing growth factors that are released in a sustained manner during tissue regeneration."

The scaffolds can be further modified by adding embryonic stem cells during polymerization, a process where small molecules are combined together to form larger ones.

"The embryonic stem cells can repopulate the injured spinal cord and serve as a source of nerve growth factors during regeneration," Sakiyama-Elbert explained.


Story Source:

The above story is based on materials provided by Washington University In St. Louis. Note: Materials may be edited for content and length.


Cite This Page:

Washington University In St. Louis. "New Horizons Of Nerve Repair: Biomedical Engineer Trips Up Proteins In Nerve Regeneration System." ScienceDaily. ScienceDaily, 26 July 2002. <www.sciencedaily.com/releases/2002/07/020725082253.htm>.
Washington University In St. Louis. (2002, July 26). New Horizons Of Nerve Repair: Biomedical Engineer Trips Up Proteins In Nerve Regeneration System. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2002/07/020725082253.htm
Washington University In St. Louis. "New Horizons Of Nerve Repair: Biomedical Engineer Trips Up Proteins In Nerve Regeneration System." ScienceDaily. www.sciencedaily.com/releases/2002/07/020725082253.htm (accessed July 31, 2014).

Share This




More Health & Medicine News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Peace Corps Pulls Workers From W. Africa Over Ebola Fears

Peace Corps Pulls Workers From W. Africa Over Ebola Fears

Newsy (July 30, 2014) The Peace Corps is one of several U.S.-based organizations to pull workers out of West Africa because of the Ebola outbreak. Video provided by Newsy
Powered by NewsLook.com
Weather Kills 2K A Year, But Storms Aren't The Main Offender

Weather Kills 2K A Year, But Storms Aren't The Main Offender

Newsy (July 30, 2014) Health officials say 2,000 deaths occur each year in the U.S. due to weather, but it's excessive heat and cold that claim the most lives. Video provided by Newsy
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins