Featured Research

from universities, journals, and other organizations

Blocking Pathway Overcomes Tumor Vessel Resistance To Radiation

Date:
August 27, 2002
Source:
Vanderbilt University Medical Center
Summary:
Blocking a specific signalling pathway with drugs can make blood vessels more susceptible to the effects of radiation and improve tumor control, Vanderbilt-Ingram Cancer Center scientists have demonstrated.

(NASHVILLE, Tenn., August 26, 2002) – Blocking a specific signalling pathway with drugs can make blood vessels more susceptible to the effects of radiation and improve tumor control, Vanderbilt-Ingram Cancer Center scientists have demonstrated.

The study, published in the current issue of the journal Cancer Research, shows a potential way to overcome an ironic discovery found in the study. The radiation therapy intended to kill the blood vessels that feed cancer cells can actually trigger a chemical pathway that makes the vessels more resistant to therapy.

"We know that if vascular endothelium is destroyed, tumor control can be improved," said principal investigator Dr. Dennis Hallahan, chairman of Radiation Oncology. "However, the blood vessels are often resistant to the therapy. Our initial hypothesis was that the cell survival pathways that allowed the blood vessels to survive were activated by growth factors from the tumor cells. We were surprised to find that cell survival pathways were activated not only by these growth factors but by the therapy itself." Blood vessels probably developed this mechanism, Hallahan said, to protect themselves against the day-to-day exposure to so-called "free radicals" produced as a byproduct of inflammation and other normal biologic processes.

The researchers found that radiation activates a biochemical signalling pathway involving the proteins known as PI3K and Akt. This pathway then makes the endothelial cells lining the blood vessels resistant to radiation by activating a cell survival pathway. "We tested whether we could reverse the blood vessels' resistance to radiation therapy by inhibiting this pathway," Hallahan said. "We found inhibitors made tumor blood vessels more sensitive to radiation."

The scientists investigated two selective enzyme inhibitors that target this pathway, wortmannin and LY294002. In cell cultures, the researchers found that use of these drugs enhanced radiation-induced cell death and cytotoxicity in endothelial cells. In animals, these agents enhanced destruction of tumor blood vessels.

Hallahan pointed out that this approach to cancer therapy, though based on the same notion that cutting off the tumor's supply lines will defeat the tumor, is different from the field of anti-angiogenesis that has received so much attention in the past few years. Anti-angiogenesis uses agents to prevent the development of these blood vessels in the first place, with the goal of keeping tumors from growing and spreading. The approach Hallahan's group is testing is "angiolytic," meaning that it aims to destroy existing blood vessels and thus help destroy the tumor.

The next step in the research will be to develop clinical trials using these or similar agents to inhibit the PI3K/Akt pathway in conjunction with radiation therapy. Wortmannin is in clinical trials already, though not yet with radiation, Hallahan said. It is expected to be at least a year before such clinical trials are ready to begin.

The Vanderbilt-Ingram Cancer Center is the only Comprehensive Cancer Center designated by the National Cancer Institute in Tennessee, and one of only 40 nationwide. This designation, the highest ranking awarded to cancer centers by the world's foremost authority on cancer, recognizes research excellence in cancer causes, development, treatment and prevention, as well as a demonstrated commitment to community education, information and outreach. To learn more, please visit http://www.vicc.org.


Story Source:

The above story is based on materials provided by Vanderbilt University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Vanderbilt University Medical Center. "Blocking Pathway Overcomes Tumor Vessel Resistance To Radiation." ScienceDaily. ScienceDaily, 27 August 2002. <www.sciencedaily.com/releases/2002/08/020827062230.htm>.
Vanderbilt University Medical Center. (2002, August 27). Blocking Pathway Overcomes Tumor Vessel Resistance To Radiation. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2002/08/020827062230.htm
Vanderbilt University Medical Center. "Blocking Pathway Overcomes Tumor Vessel Resistance To Radiation." ScienceDaily. www.sciencedaily.com/releases/2002/08/020827062230.htm (accessed October 1, 2014).

Share This



More Health & Medicine News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Cases Keep Coming for Monrovia's Island Hospital

Ebola Cases Keep Coming for Monrovia's Island Hospital

AFP (Oct. 1, 2014) A look inside Monrovia's Island Hospital, a key treatment centre in the fight against Ebola in Liberia's capital city. Duration: 00:34 Video provided by AFP
Powered by NewsLook.com
Ebola Puts Stress on Liberian Health Workers

Ebola Puts Stress on Liberian Health Workers

AP (Oct. 1, 2014) The Ebola outbreak is putting stress on first responders in Liberia. Ambulance drivers say they are struggling with chronic shortages of safety equipment and patients who don't want to go to the hospital. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Doctors Reassure Public Ebola Patient Won't Cause Outbreak

Doctors Reassure Public Ebola Patient Won't Cause Outbreak

Newsy (Sep. 30, 2014) After the announcement that the first U.S. patient had been diagnosed with Ebola, doctors were quick to say a U.S. outbreak is highly unlikely. Video provided by Newsy
Powered by NewsLook.com
TX Hospital Confirms Patient Admitted With Ebola

TX Hospital Confirms Patient Admitted With Ebola

AP (Sep. 30, 2014) Medical officials from Texas Health Presbyterian Hospital confirm they are treating a patient with the Ebola virus, the first case found in the US. (Sept. 30 Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins