Featured Research

from universities, journals, and other organizations

First Biologic Pacemaker Created By Gene Therapy In Guinea Pigs

Date:
September 12, 2002
Source:
Johns Hopkins Medical Institutions
Summary:
Working with guinea pigs, Johns Hopkins scientists have created what is believed to be the first biologic pacemaker for the heart, paving the way for a genetically engineered alternative to implanted electronic pacemakers. The advance, reported in the Sept. 12 issue of Nature, uses gene therapy to convert a small fraction of guinea pigs' heart muscle cells into specialized "pacing" cells.

Working with guinea pigs, Johns Hopkins scientists have created what is believed to be the first biologic pacemaker for the heart, paving the way for a genetically engineered alternative to implanted electronic pacemakers. The advance, reported in the Sept. 12 issue of Nature, uses gene therapy to convert a small fraction of guinea pigs' heart muscle cells into specialized "pacing" cells. "We now can envision a day when it will be possible to recreate an individual's pacemaker cells or develop hybrid pacemakers -- part electronic and part biologic," says Eduardo Marbán, M.D., Ph.D., Michel Mirowski professor at Hopkins' Institute of Molecular Cardiology, adding that clinical applications are still a few years away.

Related Articles


"Most applications of gene therapy try to cure a disease caused by a single defective or missing gene, but we used the cells' genes as a tool box to tweak its function," adds Marbán. "This is akin to turning a clunky old car into a hot rod -- if you have the parts and expertise, it can be done."

In the Hopkins experiments, heart cells in the guinea pigs spontaneously and rhythmically "fired" after the scientists genetically altered the cells' balance of potassium. Such a "biopacemaker" is a potentially important option for patients at too high a risk for infection from implanted electronic pacemakers or too small for an implanted device, say the researchers. "A biologic pacemaker should also be able to adjust to the body's changing needs, whereas an electronic pacemaker, at least in its simplest form, does not," says Marbán. "Anything that normally makes our heart go pitter-pat doesn't change the steady rhythm of the electronic pacemaker. Instead, people get tired very quickly."

Two tiny sets of "pacing" cells in the heart normally give the organ its regular beat by stimulating other cells to contract. If these specialized cells stop working or die, an implanted electronic pacemaker can keep the heartbeat going, a fact of life for hundreds of thousands of people.

"We've created a biologic pacemaker in the guinea pig, but now the hard work comes," says Marbán. "We need to fine tune it -- develop controlling strategies, find the optimum place to re-engineer the cells in the heart, control the frequency of the new pacemaker. But there is light at the end of the tunnel."

In the vast majority of heart muscle cells, a particular channel maintains a balance of potassium that makes it more difficult for them to "fire," so instead of being able to generate electricity on their own, they must be triggered by pacemaker cells.

The Hopkins scientists figured that altering this potassium balance might allow heart cells to regain the ability to fire without being triggered. Others had discovered a number of years ago that if just three specific building blocks of heart cells' potassium channel (called the "inward rectifier potassium current") are altered, the potassium balance is disrupted.

The Hopkins scientists attached the gene for the defective channel to a virus, and also tacked on green fluorescent protein so infected cells would be easily identifiable. Virus-infected cells faithfully transcribe genes carried by the virus.

"This potassium channel acts like an anchor, keeping heart muscle cells from developing pacemaker-like abilities," says Marbán. "By blocking the channel, we effectively lifted the anchor, freeing the muscle cells to re-establish abilities they last held in the developing embryo."

Three to four days after injecting the gene-carrying virus into the heart muscle of guinea pigs, Junichiro Miake, Ph.D., then a postdoctoral fellow at Hopkins, saw that heart cells had begun making the defective potassium channel. Even more important, a new, faster, pace-setting impulse was clearly visible on electrocardiograms from the animals.

"When this channel is blocked, heart muscle cells that normally have to wait for stimulation begin to beat on their own," says Marbán. "In many important ways the guinea pig is similar to humans. Its cardiac electrophysiology is very similar, and this channel is as common in human heart muscle as in the guinea pig. We believe the same principles will prevail in humans."

Normally, one set of 1,000 to 3,000 pacemaker cells is found in the right upper chamber, or atrium, of the heart, and one set straddling the junction between the atrium and the lower chamber, or ventricle. Damage to either set of pacemaker cells or the connection between them can require an electronic pacemaker. About 250,000 electronic pacemakers, about the size of a personal digital assistant (PDA), are implanted each year in the U.S.

The studies were funded by the National Heart, Lung and Blood Institute, one of the National Institutes of Health. Authors are Miake, Marbán and Bradley Nuss, all of Hopkins. Miake and Nuss are now at the University of Maryland School of Medicine, Baltimore.


Story Source:

The above story is based on materials provided by Johns Hopkins Medical Institutions. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins Medical Institutions. "First Biologic Pacemaker Created By Gene Therapy In Guinea Pigs." ScienceDaily. ScienceDaily, 12 September 2002. <www.sciencedaily.com/releases/2002/09/020912065906.htm>.
Johns Hopkins Medical Institutions. (2002, September 12). First Biologic Pacemaker Created By Gene Therapy In Guinea Pigs. ScienceDaily. Retrieved January 29, 2015 from www.sciencedaily.com/releases/2002/09/020912065906.htm
Johns Hopkins Medical Institutions. "First Biologic Pacemaker Created By Gene Therapy In Guinea Pigs." ScienceDaily. www.sciencedaily.com/releases/2002/09/020912065906.htm (accessed January 29, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, January 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Malnutrition on the Rise as Violence Flares in C. Africa

Malnutrition on the Rise as Violence Flares in C. Africa

AFP (Jan. 28, 2015) — Violence can flare up at any moment in Bambari with only a bridge separating Muslims and Christians. Malnutrition is on the rise and lack of water means simple cooking fires threaten to destroy makeshift camps where people are living. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Poultry Culled in Taiwan to Thwart Bird Flu

Poultry Culled in Taiwan to Thwart Bird Flu

Reuters - News Video Online (Jan. 28, 2015) — Taiwan culls over a million poultry in efforts to halt various strains of avian flu. Julie Noce reports. Video provided by Reuters
Powered by NewsLook.com
Media Criticizing Parents For Not Vaccinating Children

Media Criticizing Parents For Not Vaccinating Children

Newsy (Jan. 28, 2015) — As the Disneyland measles outbreak continues to spread, the media says parents who choose not to vaccinate their children are part of the cause. Video provided by Newsy
Powered by NewsLook.com
Shark Bite Victim Making Amazing Recovery

Shark Bite Victim Making Amazing Recovery

AP (Jan. 27, 2015) — A Texas woman who lost more than five pounds of flesh to a shark in the Bahamas earlier this month could be released from a Florida hospital soon. Experts believe she was bitten by a bull shark while snorkeling. (Jan. 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins