Featured Research

from universities, journals, and other organizations

UMass Researcher Studies Head Lice Using Artificial "Scalp"

Date:
September 13, 2002
Source:
University Of Massachusetts At Amherst
Summary:
Head lice, which crop up on the heads of six-to-12 million people in the U.S. every year, are becoming increasingly resistant to the special shampoos used to treat them, says University of Massachusetts Amherst toxicologist John Clark. He and researchers in his lab are trying to solve the problem by studying head lice reared on an artificial scalp designed in conjunction with researchers at the University of California-Davis. The project, funded by the National Institutes of Health, was presented last month at the meeting of the American Chemical Society in Boston.

AMHERST, Mass. – Head lice, which crop up on the heads of six-to-12 million people in the U.S. every year, are becoming increasingly resistant to the special shampoos used to treat them, says University of Massachusetts Amherst toxicologist John Clark. He and researchers in his lab are trying to solve the problem by studying head lice reared on an artificial scalp designed in conjunction with researchers at the University of California-Davis. The project, funded by the National Institutes of Health, was presented last month at the meeting of the American Chemical Society in Boston.

Related Articles


"I get phone calls from parents and school nurses who are very stressed out, saying that the over-the-counter treatments just aren't working," said Clark. Since most schools will not allow children back in the classroom until all of the lice and their eggs, or nits, are eradicated, kids are missing out on school, and parents often must stay home from work to care for them until the infestation is cleared up.

Most commercial anti-louse shampoos are based on the pyrethrins, an extract that is derived from chrysanthemums which has low toxicity to humans. The problem, according to Clark, is that similarly acting compounds, such as DDT, have been used for more than 60 years in getting rid of lice, and more and more of the insects, which live only on human heads, are surviving the treatments. Essentially, lice vulnerable to the treatments are being slowly killed off, and those that can withstand it are surviving and reproducing, creating a strain of hardy survivors. That translates into a best-case scenario for the lice, and a worst-case scenario for humans, said Clark, who points to studies finding that 50 to 98 percent of the parasites remain after being exposed to these insecticides.

"We need to look at alternative treatments and alternative compounds, because we may reach a point at which the treatments we're using now just won't work at all," he said. The products have relied on one group of compounds that act on one function: the insect's ability to use sodium to produce a nerve impulse. This has resulted in a common resistance mechanism for the natural pyrethrins and synthetic pyrethroids, such as permethrin. If alternative compounds were identified, people would be better able to treat infestations effectively, he says.

But studying the human head louse has presented a problem: the louse doesn't live anywhere but on a human scalp. "If you remove the louse, it dies,"said Clark. Scientists, no matter how dedicated, were understandably unwilling to allow lice to live on them, or to ask human subjects to do the same. Thus, an artificial habitat for head lice now enables scientists to breed and study the pests on a genetic and molecular level.

The "artificial feeding system" looks like a mini-refrigerator, but it is in fact an incubator kept at 31 degrees Celsius and 75-percent humidity. Inside sits a small plastic container, through which human blood is pumped, at body-temperature. The lice reside on an artificial membrane in test tubes dangling in the blood. Researchers recently added small, upright thatches of human hair to the apparatus, which the lice responded to with enthusiasm. Clark notes that researchers are still perfecting the "scalp" but preliminary results are very promising and its use eliminates direct human involvement.

Clark points out that there are other options in treating persistent head louse infestations by prescription medications, including lindane, malathion and ivermectin. All of those options have their own suite of drawbacks but are all still effective, he says. Also, there are people who are trained to remove lice and nits from hair using specially-designed combs, but the process can take up to four hours.

Nevertheless, the quickest way to deal with an infestation is by using commercial, over-the-counter insecticidal shampoos, "and there's a lot of unhappy parents telling school nurses, and telling me, that these shampoos aren't working very well any longer," said Clark. "What we're finding in the scientific community is agreement that effective control by permethrin and by the pyrethrins is in serious jeopardy unless scientists monitor resistance and look for new treatments."


Story Source:

The above story is based on materials provided by University Of Massachusetts At Amherst. Note: Materials may be edited for content and length.


Cite This Page:

University Of Massachusetts At Amherst. "UMass Researcher Studies Head Lice Using Artificial "Scalp"." ScienceDaily. ScienceDaily, 13 September 2002. <www.sciencedaily.com/releases/2002/09/020913064751.htm>.
University Of Massachusetts At Amherst. (2002, September 13). UMass Researcher Studies Head Lice Using Artificial "Scalp". ScienceDaily. Retrieved March 29, 2015 from www.sciencedaily.com/releases/2002/09/020913064751.htm
University Of Massachusetts At Amherst. "UMass Researcher Studies Head Lice Using Artificial "Scalp"." ScienceDaily. www.sciencedaily.com/releases/2002/09/020913064751.htm (accessed March 29, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, March 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com
WH Plan to Fight Antibiotic-Resistant Germs

WH Plan to Fight Antibiotic-Resistant Germs

AP (Mar. 27, 2015) — The White House on Friday announced a five-year plan to fight the threat posed by antibiotic-resistant bacteria amid fears that once-treatable germs could become deadly. (March 27) Video provided by AP
Powered by NewsLook.com
House Ready to Pass Medicare Doc Bill

House Ready to Pass Medicare Doc Bill

AP (Mar. 26, 2015) — In rare bipartisan harmony, congressional leaders pushed a $214 billion bill permanently blocking physician Medicare cuts toward House passage Thursday, moving lawmakers closer to resolving a problem that has plagued them for years. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins