Featured Research

from universities, journals, and other organizations

Circuit Transfers Four Times More Power Out Of Shakes And Rattle

Date:
September 24, 2002
Source:
Penn State
Summary:
Penn State engineers have optimized an energy harvesting circuit so that it transfers four times more electrical power out of vibration – the ordinary shakes and rattles generated by human motion or machine operation.

Penn State engineers have optimized an energy harvesting circuit so that it transfers four times more electrical power out of vibration – the ordinary shakes and rattles generated by human motion or machine operation.

Related Articles


Using their laboratory prototype, which was developed from off-the-shelf parts, the Penn State researchers can generate 50 milliwatts. Although they haven't tried it, they believe the motion of a runner could be harnessed to generate enough power to run a portable electronic music device. By comparison, simple, un-optimized energy harvesting circuits, for example the type used to power LEDs on "smart" skis, can only generate a few milliwatts.

The researchers say the new circuit offers an environmentally friendly alternative to disposable batteries for wearable electronic devices or for wireless communication systems. In addition, the circuit could be used in sensor and monitoring networks that manage environmental control in office buildings, robot control and guidance systems for automatic manufacturing, warehouse inventory; integrated patient monitoring, diagnostics, drug administration in hospitals, interactive toys, smart home security systems, and interactive museums.

The new circuit is described in a paper, "Adaptive Piezoelectric Energy Harvesting Circuit for Wireless, Remote Power Supply," published in the September issue of the journal, IEEE Transactions on Power Electronics. The authors are Geffrey K. Ottman, former Penn State master's degree student; Dr. Heath Hofmann, assistant professor of electrical engineering; Archin C. Bhatt, former Penn State master's degree student; and Dr. George A. Lesieutre, professor of aerospace engineering and associate director of the Penn State Center for Acoustics and Vibration.

Lesieutre explains that, like other energy harvesting circuits, the new Penn State device depends on the fact that when vibrated so that they bend or flex, piezo-electric materials produce an alternating or AC current and voltage. This electrical power has to be converted to direct current or DC by a rectifier before it can be stored in a battery or used. Hofmann adds that the magnitude of the piezoelectric material's vibration determines the magnitude of the voltage: "Since, in operation, the amount of vibrations can vary widely, some way must also be found to adaptively maximize power flow as well as convert it from AC to DC."

Using an analytical model, the team derived the theoretical optimal power flow from a rectified piezoelectric device and proposed a circuit that could achieve this power flow. The circuit includes an AC-DC rectifier and a switch-mode DC-DC converter to control the energy flow into the battery.

The Penn State researcher notes that using an approach similar to one used to maximize power from solar cells, the team developed a tracking feature that enables the DC-DC converter to continuously implement the optimal power transfer and optimize the power stored by the battery.

The circuit is the first to include an adaptive DC-DC converter and achieves about 80 percent of the theoretical maximum – well above the operating output of simple energy harvesting circuits.

The research was supported by a contract with the Office of Naval Research.


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Cite This Page:

Penn State. "Circuit Transfers Four Times More Power Out Of Shakes And Rattle." ScienceDaily. ScienceDaily, 24 September 2002. <www.sciencedaily.com/releases/2002/09/020924071946.htm>.
Penn State. (2002, September 24). Circuit Transfers Four Times More Power Out Of Shakes And Rattle. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2002/09/020924071946.htm
Penn State. "Circuit Transfers Four Times More Power Out Of Shakes And Rattle." ScienceDaily. www.sciencedaily.com/releases/2002/09/020924071946.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Car Park Solution for Flexible Green Energy

Car Park Solution for Flexible Green Energy

Reuters - Innovations Video Online (Nov. 24, 2014) A British solar power start-up says that by covering millions of existing car park spaces around the UK with flexible solar panels, the country's power problems could be solved. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Newsy (Nov. 23, 2014) Microsoft has robotic security guards working at its Silicon Valley Campus. Video provided by Newsy
Powered by NewsLook.com
US Army Completes Ebola Treatment Unit

US Army Completes Ebola Treatment Unit

Reuters - US Online Video (Nov. 22, 2014) The US Army of engineers completes Ebola treatment center in Liberia. Julie Noce reports. Video provided by Reuters
Powered by NewsLook.com
Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins