Featured Research

from universities, journals, and other organizations

Wrong Proteins Targeted In Battle Against Cancer?

Date:
October 2, 2002
Source:
Rockefeller University
Summary:
Researchers may be looking for novel cancer drugs in the wrong places, says Rockefeller University Professor James E. Darnell, Jr., M.D., in an article in this month's Nature Reviews Cancer. Darnell, who received the 2002 Albert Lasker Award for Special Achievement in Medical Science, argues that drug development research should focus more on a specific group of proteins - called transcription factors - known to be overactive in almost all human cancers.

Researchers may be looking for novel cancer drugs in the wrong places, says Rockefeller University Professor James E. Darnell, Jr., M.D., in an article in this month's Nature Reviews Cancer. Darnell, who received the 2002 Albert Lasker Award for Special Achievement in Medical Science, argues that drug development research should focus more on a specific group of proteins - called transcription factors - known to be overactive in almost all human cancers.

"The facts indicate that a limited number of transcription factors are indeed overactive in many cancers and that these overactive proteins themselves are appropriate drug targets," says Darnell, head of the Laboratory of Molecular Cell Biology at Rockefeller and co-author of the popular textbook Molecular Cell Biology.

These transcription factors include STAT3, discovered by Darnell and colleagues in 1994, STAT5, NF-kappaB, B-catenin, Notch, GLI and c-JUN - all of which play significant roles in a wide variety of cancers.

According to Darnell, drug developers continue to largely ignore these seemingly universal molecules of cancer because, unlike other cancer-causing proteins called protein kinases, transcription factors do not posses "active sites" or pockets that can be easily fitted with small inhibitory drugs.

Instead, drugs designed against transcription factors would have to target protein-protein interactions - which, because of their larger surface areas, are much harder to disrupt.

Still, Darnell argues that, despite inherent obstacles, such an approach could potentially yield novel cancer therapeutics.

"After all," he asks, "What is the benefit to medicine in all the twenty-first century promise of proteomics if we cannot selectively inhibit protein-protein interactions?"

Many of the transcription factors involved in cancer normally allow a healthy cell to respond to signals from the external environment by activating the "expression" of certain genes, which then leads to the production of new proteins. In cancer - which is characterized by cell growth gone awry - genetic mutations cause these proteins, also referred to as "oncogenic proteins," to become unusually active.

Therefore, drugs designed to block or decrease their surplus activity might effectively treat this disease.

"Transcription factors are attractive targets because they are both less numerous than other signaling activators and are at a focal point of many cancer pathways," says Darnell.

"Like kicking Achilles in the heel, striking at these targets would constitute a more global approach to fighting cancer."

In the past, drug developers in search of cancer therapeutics have placed a large focus on cancer-causing molecules called protein kinases, primarily because their active sites - tiny crevices where small molecules normally bind and activate the protein - can be easily blocked with small molecule drugs. The drug Gleevec, for example, can temporarily treat chronic myeloid leukemia by fitting into and plugging up the active site of a protein kinase, called the Ableson kinase, associated with this disease.

But, according to Darnell, this approach has two main drawbacks. First, as is the case with Gleevec, resistance to the drugs can develop, and, second, each of the protein kinases tends to be associated with only a limited number of cancer types.

Darnell argues that both of these obstacles could possibly be overcome by instead targeting certain transcription factors. He says that these proteins should not develop resistance to drugs as fast as protein kinases, and, because they are common to many cancers, drugs designed to block them should work against a diverse range of cancer types.

The final challenge is then how to target molecules that lack the convenient active sites of protein kinases. Drugs directed against transcription factors would have to prevent them from binding to one of their two primary molecular targets: DNA or proteins. To turn on specific genes, transcription factors must bind to other proteins as well as to DNA.

Since past efforts to develop drugs that disrupt DNA-protein interactions have failed, Darnell believes that targeting protein-protein interactions is the next logical step.

"With the availability of robotic screening procedures, huge chemical libraries need to be screened for small molecules that target any of the specific protein-protein interactions of transcription factors," he says.

"Even though this approach is more difficult," he adds, "It has proved practical in one preliminary case, and furthermore many inventive technologies from chemistry labs around the world give hope that this approach has great possibilities."

Founded by John D. Rockefeller in 1901, The Rockefeller University was this nation's first biomedical research university. Today it is internationally renowned for research and graduate education in the biomedical sciences, chemistry, bioinformatics and physics. A total of 21 scientists associated with the university have received the Nobel Prize in medicine and physiology or chemistry, 17 Rockefeller scientists have received Lasker Awards, have been named MacArthur Fellows and 11 have garnered the National Medical of Science. More than a third of the current faculty are elected members of the National Academy of Sciences.


Story Source:

The above story is based on materials provided by Rockefeller University. Note: Materials may be edited for content and length.


Cite This Page:

Rockefeller University. "Wrong Proteins Targeted In Battle Against Cancer?." ScienceDaily. ScienceDaily, 2 October 2002. <www.sciencedaily.com/releases/2002/10/021002070537.htm>.
Rockefeller University. (2002, October 2). Wrong Proteins Targeted In Battle Against Cancer?. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2002/10/021002070537.htm
Rockefeller University. "Wrong Proteins Targeted In Battle Against Cancer?." ScienceDaily. www.sciencedaily.com/releases/2002/10/021002070537.htm (accessed October 2, 2014).

Share This



More Health & Medicine News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Might Not Be Out Of Control In U.S., But Coverage Is

Ebola Might Not Be Out Of Control In U.S., But Coverage Is

Newsy (Oct. 2, 2014) Coverage of the lone Ebola patient discovered in Texas has U.S. media in a frenzy — but does the coverage match the reality? Video provided by Newsy
Powered by NewsLook.com
US Hunts Contacts of Ebola Patient, Including Children

US Hunts Contacts of Ebola Patient, Including Children

AFP (Oct. 2, 2014) Health officials in Texas on Wednesday scoured the Dallas area for people, including schoolchildren, who came in contact with a Liberian man who was diagnosed with Ebola in the United States. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Study Says Losing Sense Of Smell Can Indicate Death

Study Says Losing Sense Of Smell Can Indicate Death

Newsy (Oct. 2, 2014) Researchers found elderly adults with a poor sense of smell are more likely to die within five years. Video provided by Newsy
Powered by NewsLook.com
Pregnancy Spacing Could Have Big Impact On Autism Risks

Pregnancy Spacing Could Have Big Impact On Autism Risks

Newsy (Oct. 1, 2014) A new study says children born less than one year and more than five years after a sibling can have an increased risk for autism. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins