Featured Research

from universities, journals, and other organizations

ORNL Invention Clears Way For Development Of New Materials

Date:
October 3, 2002
Source:
Oak Ridge National Laboratory
Summary:
From soft drink cans to bones, virtually all materials are made up of heterogeneous - or dissimilar - microstructures, and researchers at Oak Ridge National Laboratory have developed a tool to better study those structures.

OAK RIDGE, Tenn., Oct. 2, 2002 - From soft drink cans to bones, virtually all materials are made up of heterogeneous - or dissimilar - microstructures, and researchers at Oak Ridge National Laboratory have developed a tool to better study those structures.

The work of ORNL's Gene Ice and Ben Larson has attracted interest from NASA; the auto, semiconductor and electronics industries; and the world of academia because it fills a gap that has hindered progress in studying new materials. Their technique enables them to study the heterogeneous structure of materials in great detail and in three dimensions, and it paves the path for the development of new materials.

"Although people have gotten pretty good at developing new materials with trial and error, information that this technology will provide will reduce reliance on that technique," said Larson, a senior researcher in the lab's Solid State Division and the developer of a novel technique that allows for the 3D capability. "This will allow scientists to look at materials between 1/10th of a micron to hundreds of microns - the so-called mesoscale."

A micron is equal to one-millionth of a meter. It is at this scale that the Department of Energy wanted ORNL to investigate, and just two years ago Ice received an R&D 100 Award for his differentially deposited X-ray micro-focusing mirrors. Ice's invention allows scientists to study internal interactions in materials made up of small disoriented crystal blocks called grains.

Larson's technique uses a knife-edge profiler as a moving pinhole camera to make measurements with a charge coupled device area detector. The approach builds on Ice's accomplishments by making it possible to probe the interior of bulk materials to obtain "depth-resolved" structural information.

The instrument allows researchers to examine and measure structure, orientation, morphology, stress and strain, all without destroying the sample. Researchers can perform these studies with micron resolution in single crystal, polycrystalline materials, composites, multi-layers and deformed materials in the mesoscale range.

The work was published earlier this year in a Letter to Nature (Nature 415, 887).

In the past, researchers could either study isolated single crystals or they could study the average properties of many polycrystalline grains. Neither approach provides an entirely accurate picture at the scale required to understand the behavior of polycrystalline materials. The ORNL instrument provides sub-micron resolution and three-dimensional information over hundreds of microns, which is exactly what is needed to study changes in microstructure and develop materials.

During the last two years, Larson and Ice have been working toward making their measurement technique available to industry and the scientific community. They believe their differential-aperture X-ray microscopy represents a breakthrough that will revolutionize micro-structural study of materials.

"With this new capability, previously missing information is available for comparison with computer modeling to guide the development of materials," said Ice, a researcher in ORNL's Metals & Ceramics Division. "I think we can expect this technique to contribute to the development of materials for computers, automobiles, medical equipment and superconductors."

Larson and Ice conduct their experiments at the Advanced Photon Source at Argonne National Laboratory. Collaborators include Wenge Yang, John Budai and Jon Tischler of ORNL and researchers at Howard University in Washington, D.C., and the University of Illiniois.

Funding for this research is provided by DOE, which also provided initial funding through ORNL's seed money and Laboratory Directed Research and Development programs. ORNL is a DOE multiprogram research facility managed by UT-Battelle.


Story Source:

The above story is based on materials provided by Oak Ridge National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Oak Ridge National Laboratory. "ORNL Invention Clears Way For Development Of New Materials." ScienceDaily. ScienceDaily, 3 October 2002. <www.sciencedaily.com/releases/2002/10/021003075953.htm>.
Oak Ridge National Laboratory. (2002, October 3). ORNL Invention Clears Way For Development Of New Materials. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2002/10/021003075953.htm
Oak Ridge National Laboratory. "ORNL Invention Clears Way For Development Of New Materials." ScienceDaily. www.sciencedaily.com/releases/2002/10/021003075953.htm (accessed October 20, 2014).

Share This



More Matter & Energy News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Robotic Eyes' Helps Japan's Bipedal Bot Run Faster

'Robotic Eyes' Helps Japan's Bipedal Bot Run Faster

Reuters - Innovations Video Online (Oct. 16, 2014) Japanese researcher uses an eye-sensor camera to enable a bipedal robot to balance itself, while running on a treadmill. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Lockheed Martin's Fusion Concept Basically An Advertisement

Lockheed Martin's Fusion Concept Basically An Advertisement

Newsy (Oct. 15, 2014) Lockheed Martin announced plans to develop the first-ever compact nuclear fusion reactor. But some experts said the excitement is a little premature. Video provided by Newsy
Powered by NewsLook.com
First Confirmed Case Of Google Glass Addiction

First Confirmed Case Of Google Glass Addiction

Buzz60 (Oct. 15, 2014) A Google Glass user was treated for Internet Addiction Disorder caused from overuse of the device. Morgan Manousos (@MorganManousos) has the details on how many hours he spent wearing the glasses, and what his symptoms were. Video provided by Buzz60
Powered by NewsLook.com
Science Proves Why Pizza Is So Delicious

Science Proves Why Pizza Is So Delicious

Buzz60 (Oct. 15, 2014) The American Chemical Society’s latest video about chemistry in every day life breaks down pizza, and explains exactly why it's so delicious. Gillian Pensavalle (@GillianWithaG) has the video. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins