Featured Research

from universities, journals, and other organizations

Camera Eyes Dusty Spirals In Milky Way Center

Date:
October 3, 2002
Source:
NASA/Jet Propulsion Laboratory
Summary:
The highest resolution mid-infrared picture ever taken of the center of our Milky Way galaxy reveals details about dust swirling into the black hole that dominates the region.

The highest resolution mid-infrared picture ever taken of the center of our Milky Way galaxy reveals details about dust swirling into the black hole that dominates the region.

The image was taken by a team led by Dr. Mark Morris of the University of California, Los Angeles, at the Keck II telescope in Hawaii, with an infrared camera built at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The camera, called the Mid-Infrared Large-Well Imager, or Mirlin, used three different infrared wavelengths to build the color composite image available online at http://irastro.jpl.nasa.gov/GalCen/galcen.html.

The mid-infrared part of the electromagnetic spectrum comprises the wavelengths at which room temperature objects glow most brightly. Everything on Earth, including the telescope, the astronomers, and even the atmosphere, emits a bright glow in the mid-infrared. Seeing celestial objects though this glow is like trying to see stars during daylight; special techniques are needed to tease the stars from this glow to build a recognizable picture.

Near the center of the image, but not apparent at these wavelengths, is a black hole three million times heavier than our Sun. Its gravitational pull, so powerful that not even light can escape from its surface, affects the motion of dust, gas and even stars, throughout the region.

A veil of dust absorbs the visible light emitted by most of the stars near the Galactic Center. The light warms the dust, which then radiates in the infrared and becomes visible to the mid-infrared camera.

The image shows this dusty material spiraling toward the black hole, most notably the stream of gas and dust called the Northern Arm. When this material eventually falls into the black hole, it will release energy that affects everything in its vicinity. This event, which astronomers are certain has happened many times in the history of the Milky Way, may trigger the formation of a new generation of stars by causing other nearby dust clouds to collapse, or it may actually inhibit the formation of new stars if the released energy destroys those clouds. Either way, the black hole continues to grow larger as new material falls into it.

Astronomers know that the stars in this image are all very luminous, because less luminous stars appear very faint to a mid-infrared camera. A massive star nearing the last stages of its life, the red supergiant IRS7, is visible in this image as the smallish, bright spot just above the center. IRS7 is simply so luminous -- more than 100,000 times as bright as our Sun -- that we can see its starlight directly.

The "mini-cavity" in the center is a bubble that has apparently been evacuated of dust and gas. A star located at the center of the mini-cavity (not visible in this image) apparently blows this bubble with its powerful stellar wind. The "bullet" is a mysterious, fast-moving feature pointing roughly away from the mini-cavity, just below and to the right of the center. It may be a jet composed of gas and dust.

Other members of the Mirlin imaging team, along with Morris, are Dr. Andrea Ghez, Dr. Eric Becklin and Angelle Tanner of UCLA; Drs. Michael Ressler and Michael Werner of JPL; and Dr. Angela Cotera Hulet of the Arizona State University, Tempe, Ariz. The camera was built at JPL by Ressler and Werner. Some findings based on this image have been published in the Astrophysical Journal.

Studying processes in the center of our own galaxy may teach astronomers more about much more active, more distant galactic nuclei -- objects like quasars and Seyfert galaxies, which are the most violent places known in the universe. More information about both the center of our Milky Way and the centers of other galaxies may be obtained with future instruments that have higher resolution and greater sensitivity.

For example, NASA is planning a similar infrared camera, the Mid-Infrared Instrument, one of three instruments that will fly aboard the James Webb Space Telescope, launching in 2010. This camera will achieve resolution roughly equivalent to the Keck images, but because it will orbit above the warm glow emitted by Earth's atmosphere, it will be 1,000 times more sensitive. Using this instrument, astronomers will be able to study the centers of galaxies all the way to the edge of the observable universe.

JPL, in conjunction with a consortium of European countries and the European Space Agency, is developing the Mid-Infrared Instrument. The James Webb Space Telescope is managed by the Goddard Space Flight Center, Greenbelt, Md.

JPL is a division of the California Institute of Technology in Pasadena.


Story Source:

The above story is based on materials provided by NASA/Jet Propulsion Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Jet Propulsion Laboratory. "Camera Eyes Dusty Spirals In Milky Way Center." ScienceDaily. ScienceDaily, 3 October 2002. <www.sciencedaily.com/releases/2002/10/021003080626.htm>.
NASA/Jet Propulsion Laboratory. (2002, October 3). Camera Eyes Dusty Spirals In Milky Way Center. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2002/10/021003080626.htm
NASA/Jet Propulsion Laboratory. "Camera Eyes Dusty Spirals In Milky Way Center." ScienceDaily. www.sciencedaily.com/releases/2002/10/021003080626.htm (accessed July 28, 2014).

Share This




More Space & Time News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Newsy (July 27, 2014) The satellite is back under ground control after a tense few days, but with a gecko sex experiment on board, the media just couldn't help themselves. Video provided by Newsy
Powered by NewsLook.com
This Week @ NASA, July 25, 2014

This Week @ NASA, July 25, 2014

NASA (July 25, 2014) Apollo 11 celebration, Next Giant Leap anticipation, ISS astronauts appear in the House and more... Video provided by NASA
Powered by NewsLook.com
Space to Ground: Coming and Going

Space to Ground: Coming and Going

NASA (July 25, 2014) One station cargo ship leaves, another arrives, aquatic research and commercial spinoffs. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com
How A Solar Flare Could Have Wrecked Earth's Electronics

How A Solar Flare Could Have Wrecked Earth's Electronics

Newsy (July 25, 2014) Researchers say if Earth had been a week earlier in its orbit around the sun, it would have taken a direct hit from a 2012 coronal mass ejection. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins