Featured Research

from universities, journals, and other organizations

Chemists Synthesize Key Component In The Drive Toward Molecular Electronic Devices

Date:
October 4, 2002
Source:
University Of Chicago
Summary:
University of Chicago chemists have successfully synthesized an electronic component the size of a single molecule that could prove crucial in the continuing push to miniaturize electronic devices.

University of Chicago chemists have successfully synthesized an electronic component the size of a single molecule that could prove crucial in the continuing push to miniaturize electronic devices.

Related Articles


The component, called a molecular diode, restricts current flow to one direction between electronic devices. In the semiconductor industry these components, called p-n junctions, form half of a transistor. Man-Kit Ng, a 2002 Ph.D. in Chemistry, and Luping Yu, Professor in Chemistry, describe their diode in the Oct. 2 issue of the journal Angewandte Chemie and online Sept. 12 in the Journal of the American Chemical Society.

Other researchers have synthesized other types of molecular components, but the Chicago chemists are believed to be the first to synthesize a p-n junction.

“There has been a tremendous amount of hyperbole surrounding this area of ‘molecular electronics,’ but Professor Yu’s advance is nothing less than a quantum leap forward in molecular electronics,” said Reginald Penner, professor of chemistry at the University of California, Irvine.

“Professor Yu has developed diblock copolymer-based molecular diodes. Essentially, he has shown that the important electronic properties of this circuit element can be engineered into a single polymer molecule,” Penner added.

The Chicago molecular diode measures 2.5 nanometers in diameter, or approximately the width of a dozen atoms sitting side-by-side.

“The synthesis took us a long time, actually, but we made it,” Yu said. “Man-Kit Ng is terrific. He’s a superb organic chemist. He deserves the most credit.”

Synthesizing the molecular diode required a multi-step process that involved creating two different compounds that display opposite electronic properties, then chemically bonding them together (the diblock copolymer). The compounds, which are made mostly of hydrogen and carbon, are embedded in a monolayer, a sheet measuring only one molecule thick. The sheets are then transferred to a gold platform, where a scanning tunneling microscope measures the properties of the diodes.

It took Ng and Yu more than six months to develop the synthesis process, but now they can mass-produce molecular diodes with relative ease. Yu is confident that he can now synthesize a molecular transistor, but a more difficult hurdle remains: how to connect molecular components to make a working computer. “If you can solve that issue, that’s the ultimate computer you can have as far as component size is concerned,” Yu said.

Ng said the most challenging aspect of the project was translating the concept into an experiment involving synthetic chemistry, surface chemistry, film fabrication and scanning tunneling spectroscopy to measure electrical properties.

“It took us quite awhile to understand how to prepare monolayer films on appropriate solid supports before we could start investigating the electronic properties of our new materials,” Ng said.

Yu has spent most of his career experimenting with a chemically versatile class of molecules called polymers. Only recently did he bring his polymer expertise to bear on the field of molecular electronics.

“I did not step in for a long time because if I do something it has to be unique,” Yu said.

He appears to have succeeded.

“It is difficult to overstate the importance of this discovery,” Penner said. “Other types of molecular devices should be accessible using Professor Yu’s approach.” These would include light-emitting diodes (LEDs), which are widely used in consumer electronics and transistors.

The project was funded by the National Science Foundation, the University of Chicago’s Materials Research Science and Engineering Center, and the Air Force Office of Scientific Research.

Photos available at:http://www-news.uchicago.edu/releases/photos/diode/


Story Source:

The above story is based on materials provided by University Of Chicago. Note: Materials may be edited for content and length.


Cite This Page:

University Of Chicago. "Chemists Synthesize Key Component In The Drive Toward Molecular Electronic Devices." ScienceDaily. ScienceDaily, 4 October 2002. <www.sciencedaily.com/releases/2002/10/021004065722.htm>.
University Of Chicago. (2002, October 4). Chemists Synthesize Key Component In The Drive Toward Molecular Electronic Devices. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2002/10/021004065722.htm
University Of Chicago. "Chemists Synthesize Key Component In The Drive Toward Molecular Electronic Devices." ScienceDaily. www.sciencedaily.com/releases/2002/10/021004065722.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins