Featured Research

from universities, journals, and other organizations

Your Brain Is Teaching Your Nose New Tricks, Say UC Berkeley Researchers

Date:
October 24, 2002
Source:
University Of California - Berkeley
Summary:
A new study by a team of neuroscientists at the University of California, Berkeley, has determined that we learn new smells in an area of our brains, not just in our noses, which have neural receptors previously thought to be solely responsible for a person's ability to detect new odors.

Berkeley - Any wine connoisseur knows the nose can learn to recognize subtle new aromas, but where does that learning take place?

A new study by a team of neuroscientists at the University of California, Berkeley, has determined that we learn new smells in an area of our brains, not just in our noses, which have neural receptors previously thought to be solely responsible for a person's ability to detect new odors.

This finding has prompted the team, led by graduate student Joel Mainland and Noam Sobel, assistant professor of psychology, to conclude that the adult brain has more capabilities to change than previously thought. The study appears in the Oct. 24 issue of Nature.

The discovery may have implications for how the brain recovers from injury. Lately, there has been a lot of evidence that activity in damaged regions of the body results in regeneration in the brain. For example, in stroke patients, tying down the unaffected limbs to force patients to try use their affected arms or legs has resulted in recovery of some use of those limbs.

The researchers conducted their work through a very simple mechanism using the chemical androstenone. Androstenone cannot be detected by approximately 30 percent of the population.

However, about half of such non-detectors can develop the capability to detect the odorant following repeated exposure to it. For those who can smell it, there is a wide range of reactions to its odor. The people who are most sensitive to it find the smell extremely foul and reminiscent, Sobel said, "of dirty laundry."

Sobel and his colleagues conducted an extensive screening to find subjects who could not detect this smell. The screening yielded 12 people. In the test subjects, one nostril was completely blocked, and the open nostril was exposed to androstenone every day for 21 days. After the 21 days, both nostrils were tested for detection. Both nostrils doubled their detection accuracy due to this exposure.

The unexposed nostril detected the androstenone at the same level as the exposed nostril. Because there is no neural link between the nostrils at the peripheral level, the researchers concluded that this exposure-induced learning must have occurred in the olfactory structures in the brain that share information from both nostrils.

"Since the unexposed nostril learned just as well, the brain is definitely involved. This contradicts a previous theory that olfactory learning occurred in the nose only," said Sobel, a member of UC Berkeley's Health Sciences Initiative, a broad effort bringing together campus researchers from many disciplines to work on health problems of the 21st century.

"Our results suggest there must be a central component in the brain at work," Sobel said, though he added the researchers have not ruled out peripheral neural changes occurring as well. Ongoing research is being conducted to determine if peripheral neural plasticity - the nervous system acquiring a capability it didn't have before - is involved.

In children, the nervous system is constantly changing and developing, "but in adults, it's a question as to how much it can change," Sobel said. "If you want to repair a damaged nervous system, the best way to go about doing this is to figure out how it regenerates on its own."

Further studies by the team will investigate the difference between people who can learn to detect an odor through exposure to that odor and those who cannot. The researchers also will use Magnetic Resonance Imaging to localize regions in the brain to see where learning and change is occurring.


Story Source:

The above story is based on materials provided by University Of California - Berkeley. Note: Materials may be edited for content and length.


Cite This Page:

University Of California - Berkeley. "Your Brain Is Teaching Your Nose New Tricks, Say UC Berkeley Researchers." ScienceDaily. ScienceDaily, 24 October 2002. <www.sciencedaily.com/releases/2002/10/021024065510.htm>.
University Of California - Berkeley. (2002, October 24). Your Brain Is Teaching Your Nose New Tricks, Say UC Berkeley Researchers. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2002/10/021024065510.htm
University Of California - Berkeley. "Your Brain Is Teaching Your Nose New Tricks, Say UC Berkeley Researchers." ScienceDaily. www.sciencedaily.com/releases/2002/10/021024065510.htm (accessed August 21, 2014).

Share This




More Mind & Brain News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Do More Wedding Guests Make A Happier Marriage?

Do More Wedding Guests Make A Happier Marriage?

Newsy (Aug. 20, 2014) — A new study found couples who had at least 150 guests at their weddings were more likely to report being happy in their marriages. Video provided by Newsy
Powered by NewsLook.com
Charter Schools Alter Post-Katrina Landscape

Charter Schools Alter Post-Katrina Landscape

AP (Aug. 20, 2014) — Nine years after Hurricane Katrina, charter schools are the new reality of public education in New Orleans. The state of Louisiana took over most of the city's public schools after the killer storm in 2005. (Aug. 20) Video provided by AP
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) — Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Kids' Drawings At Age 4 Linked To Intelligence At Age 14

Kids' Drawings At Age 4 Linked To Intelligence At Age 14

Newsy (Aug. 19, 2014) — A study by King's College London says there's a link between how well kids draw at age 4 and how intelligent they are later in life. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins