Featured Research

from universities, journals, and other organizations

Paper Discusses Circuitry For Quantum Computing

Date:
October 24, 2002
Source:
University Of Michigan
Summary:
The next radically different means of information processing will be quantum computing, which researchers say will use the principles of quantum mechanics to perform complex calculations in a fraction of the time needed by the world’s fastest supercomputers.

ANN ARBOR -- The next radically different means of information processing will be quantum computing, which researchers say will use the principles of quantum mechanics to perform complex calculations in a fraction of the time needed by the world’s fastest supercomputers.

A paper published recently in Physical Review Letters (Nov. 4 issue) has proposed an experimentally realizable circuit and an efficient scheme to implement scalable quantum computing. The ability to scale up the technology from the one or two-qubit experiments that are common in the laboratory to systems involving many qubits is what will finally make it possible to actually build a quantum computer.

“Scalable quantum computing with Josephson charge qubits,” was written by Franco Nori of the University of Michigan Physics Department and the Institute of Physical and Chemical Research (RIKEN) and two colleagues, J.Q. You from the institute and J.S. Tsai from the institute and the NEC Fundamental Research Laboratories.

Quantum computing is very different from the standard computers used today. Today’s computers process information using bits, each one equal to either 0 or 1. Quantum information processing uses quantum versions of these bits, individual atoms or subatomic particles called qubits. These qubits can be equal to 0, to1, or even both 0 and 1 at the same time. The ability to manipulate these superpositions of 0 and 1 is what will allow quantum computers to process complex information so quickly, since any given qubit can occupy either position.

In order to implement quantum information technology, it will be necessary to prepare, manipulate and measure the fragile quantum state of a system. "The first steps in this field have mostly focused on the study of single qubits,” Nori said. “But constructing a large quantum computer will mean scaling up to very many qubits, and controlling the connectivity between them. These are two of the major stumbling blocks to achieving practical quantum computing and we believe our method can efficiently solve these two central problems. In addition, a series of operations are proposed for achieving efficient quantum computations.

“We have proposed a way to solve a central problem in quantum computing – how to select two qubits, among very many, and make them interact with each other, even though they might not be nearest neighbors, as well as how to perform efficient quantum computing operations with them,” Nori said.

A copy of the paper (no. 197902) can be found at http://ojps.aip.org/dbt/dbt.jsp?KEY=PRLTAO&Volume=89&Issue=19


Story Source:

The above story is based on materials provided by University Of Michigan. Note: Materials may be edited for content and length.


Cite This Page:

University Of Michigan. "Paper Discusses Circuitry For Quantum Computing." ScienceDaily. ScienceDaily, 24 October 2002. <www.sciencedaily.com/releases/2002/10/021024070245.htm>.
University Of Michigan. (2002, October 24). Paper Discusses Circuitry For Quantum Computing. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2002/10/021024070245.htm
University Of Michigan. "Paper Discusses Circuitry For Quantum Computing." ScienceDaily. www.sciencedaily.com/releases/2002/10/021024070245.htm (accessed July 28, 2014).

Share This




More Computers & Math News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Google's Next Frontier: The Human Body

Google's Next Frontier: The Human Body

Newsy (July 27, 2014) Google is collecting genetic and molecular information to paint a picture of the perfectly healthy human. Video provided by Newsy
Powered by NewsLook.com
Congress OKs Unlocking Phones From Carriers

Congress OKs Unlocking Phones From Carriers

Newsy (July 26, 2014) A bill legalizing "unlocking," or untethering a phone from its default wireless carrier, has passed Congress and is expected to be signed into law. Video provided by Newsy
Powered by NewsLook.com
Apple Acquires 'Pandora of Books' Service BookLamp

Apple Acquires 'Pandora of Books' Service BookLamp

Newsy (July 26, 2014) Apple reportedly acquired analytics and recommendation engine BookLamp for between $10 and $15 million. Video provided by Newsy
Powered by NewsLook.com
Wikipedia Puts Congress in Time Out, Blocks Editing

Wikipedia Puts Congress in Time Out, Blocks Editing

Newsy (July 26, 2014) An IP address within the House of Representatives was banned from editing Wikipedia articles for 10 days after it made some questionable changes. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins