Featured Research

from universities, journals, and other organizations

Volcanoes On Jovian Moon Spew Salt Into Atmosphere; Discovery Explains 1970s Observation Of Sodium Above Io

Date:
January 1, 2003
Source:
Johns Hopkins University
Summary:
Astronomers at The Johns Hopkins University, the Observatoire de Paris, and other institutions have solved a nearly 30-year-old mystery surrounding Jupiter's moon Io, showing that volcanoes there appear to be shooting gaseous salt into the moon's thin atmosphere.

Astronomers at The Johns Hopkins University, the Observatoire de Paris, and other institutions have solved a nearly 30-year-old mystery surrounding Jupiter's moon Io, showing that volcanoes there appear to be shooting gaseous salt into the moon's thin atmosphere.

Related Articles


"This gives nice closure to the discovery Bob Brown made in 1974 of sodium in neutral clouds of gas around Io, " said Darrell Strobel, a professor of earth and planetary sciences in the Krieger School of Arts and Sciences at Johns Hopkins and an author of a paper on the new results in the Jan. 2 issue of "Nature."

Further analysis of the results, including modeling how the salt is broken down into sodium and chlorine atoms, could help planetary scientists move closer to determining what kinds of meteoritic materials originally came together to form Io, according to Strobel.

Strobel said Brown, who later became a project scientist at the Space Telescope Science Institute, found the sodium around Io while testing out a spectrograph he had built.

"He told me some years afterwards, 'This discovery of mine is so simple. I was amazed somebody hadn't done it 30 to 40 years earlier,'" Strobel said. "Nobody was looking for it; nobody would have guessed it was there."

Astronomers winnowed the list of theoretical suspects for the source of sodium for years before determining the most likely suspect was salt, or sodium chloride. That conclusion was reached after the detection two years ago of chlorine in a doughnut-shaped, electrically charged cloud of gas around Io known as the plasma torus. Based on the new chlorine finding and the theoretical work, astronomers decided to conduct the exacting studies necessary to look for salt.

"The bottom line is that there seems to be enough salt in Io's volcanic atmosphere to supply both the amount of sodium that one sees in the neutral clouds and the chlorine in the plasma torus," said Strobel, who is also a professor of physics and astronomy at Johns Hopkins.

A slightly eccentric orbit around Jupiter and the gravitational fields of two nearby large moons, Europa and Ganymede, subject Io to a great deal of stress, flexing the moon's crust and heating its core. As a result, Io is hands-down the most volcanically active planetary body in the solar system. Roughly comparable in size to Earth's moon, Io's frequently active volcanoes would make it a hell for anyone who might want to visit, but it's a heaven for scientists eager to watch a planetary body regularly belch up tons of its innards.

"Roughly two tons of volcanic material are tossed into Io's magnetosphere every second, and then when this material is ionized [electrically charged], the inner magnetosphere starts to resemble a miniature pulsar," Strobel said.

Interactions between the clouds of electrically charged gas around Io and electrically charged particles in Jupiter's polar atmosphere speed up the rotation of the charged particles around Io but also apply an infinitesmal drag to the rotation of Jupiter, gradually slowing the speed at which the giant planet spins.

"It's a remarkable, unique system of interaction," Strobel said. "We've learned quite a bit since the days when Voyager 1 first swept by the moon in 1979 and revealed eight active volcanoes, but we don't understand it completely."

Strobel said the lead author of the new "Nature" paper, Emmanuel Lellouch of the Observatoire de Paris, had looked previously for salt in Io's atmosphere and failed to find signs of it. Co-author Nicholas Snyder of the University of Colorado at Boulder, one of the researchers who discovered chlorine in Io's plasma torus, suggested using millimeter-wavelength radio telescope at the Institut de Radio-Astronomie Millimetrique in Granada, Spain, to perform a definitive search for salt.

Observations with a millimeter-wavelength radio telescope force astronomers to focus on very tiny regions of the spectrum, making it necessary to carefully choose the frequencies they want to observe. But when the team conducted its studies in January 2002, they found the characteristic spectroscopic lines they were looking for. An examination of potential sources for the salt in the atmosphere pointed to the volcanoes as the most likely point of origin for the salt.

Other authors on the paper were Gabriel Paubert of the Institut de Radio-Astronomie Millimetrique; and Julianne Moses of NASA's Lunar and Planetary Institute. This research was supported by the NASA Planetary Atmospheres Program.


Story Source:

The above story is based on materials provided by Johns Hopkins University. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins University. "Volcanoes On Jovian Moon Spew Salt Into Atmosphere; Discovery Explains 1970s Observation Of Sodium Above Io." ScienceDaily. ScienceDaily, 1 January 2003. <www.sciencedaily.com/releases/2003/01/030101222258.htm>.
Johns Hopkins University. (2003, January 1). Volcanoes On Jovian Moon Spew Salt Into Atmosphere; Discovery Explains 1970s Observation Of Sodium Above Io. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2003/01/030101222258.htm
Johns Hopkins University. "Volcanoes On Jovian Moon Spew Salt Into Atmosphere; Discovery Explains 1970s Observation Of Sodium Above Io." ScienceDaily. www.sciencedaily.com/releases/2003/01/030101222258.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Space & Time News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Scientists Find Invisible Space Shield Protecting Earth

Scientists Find Invisible Space Shield Protecting Earth

Newsy (Nov. 27, 2014) An invisible barrier is keeping dangerous super fast electrons from interfering with our atmosphere, but scientists aren't entirely sure how. Video provided by Newsy
Powered by NewsLook.com
NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Feast Your Eyes: Lamb Chop Sent Into Space from UK

Feast Your Eyes: Lamb Chop Sent Into Space from UK

Reuters - Light News Video Online (Nov. 25, 2014) Take a stab at this -- stunt video shows a lamb chop's journey from an east London restaurant over 30 kilometers into space. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Soyuz Spacecraft Docks With International Space Station: NASA

Soyuz Spacecraft Docks With International Space Station: NASA

AFP (Nov. 24, 2014) A Russian Soyuz spacecraft carrying Italy's first female astronaut safely docks with the International Space Station, according to NASA. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins