Featured Research

from universities, journals, and other organizations

Rice University Researchers Develops Nanosensor For Precision Chemical Analysis; Nanoshell Sensor Opens Door For New Methods To Exam Single Molecules

Date:
January 10, 2003
Source:
Rice University
Summary:
Nanotechnology researchers at Rice University have demonstrated the ability to precisely control the electromagnetic field around nanoparticles, opening the door for chemical screening techniques that could allow doctors, life scientists and chemists to routinely analyze samples as small as a single molecule.

HOUSTON--JAN. 13, 2002 -- Nanotechnology researchers at Rice University have demonstrated the ability to precisely control the electromagnetic field around nanoparticles, opening the door for chemical screening techniques that could allow doctors, life scientists and chemists to routinely analyze samples as small as a single molecule.

The research is detailed in the current issue of Applied Physics Letters. It builds upon a widely used method of molecular analysis called Raman spectroscopy and capitalizes on the tunable optical properties of metal nanoshells, a novel type of nanoparticle invented at Rice.

"This result is extremely important because it is the first time that anyone has actually designed and engineered a nanosensor specifically for obtaining chemical information," said nanoshell inventor Naomi Halas, the Stanley C. Moore Professor of Electrical and Computer Engineering. "There are widespread applications for this technology in environmental science, chemistry and biosensing, and it may have very important applications in the early detection of cancer."

Scientists commonly use spectroscopy to discern detailed information about everything from distant galaxies to individual molecules. By studying the spectrum of light that an object emits, scientists can decipher which elements are present in the sample, and in some cases, how those elements relate to one another. Raman spectroscopy, in particular, allows scientists to observe the vibrational states of molecules, giving clues about where and how much molecules bend, for example, and serves as a "fingerprint" for the identification of specific molecules that may be of interest, such as environmental contaminants or chemical or biological toxins.

Scientists have long known that they could boost the Raman light emissions from a sample by a million times or more by placing the sample next to small particles of metal called colloids. Scientists have even observed single molecules with this method, but they have never been able to precisely control the electromagnetic state of the metal colloids, so results and interpretations of such studies vary widely.

Rice's research offers scientists a chance to precisely control "surface enhanced Raman scattering," or SERS. In the Rice experiments, Halas's group was able to dramatically enhance the SERS effect, making it up to a billion times more powerful in some cases.

Similar in structure to a hard-shelled chocolate candy, nanoshells are layered colloids that consist of a core of non-conducting material covered by a thin metallic shell. By varying the thickness of the conducting shell, researchers in Halas' group can precisely tune the electric and optical properties of nanoshells.

Nanoshells are so useful for enhancing SERS and for other applications because of their size and precise structure. Nanoshells are just slightly larger than the size of molecules, measuring just a few tens of nanometers, or billionths of a meter, in diameter. Tuning the properties of nanoshells gives Halas' group the ability to exert new forms of precision control at the molecular level.

The SERS research is described in the Jan. 13 issue of Applied Physics Letters in a paper titled "Controlling the Surface Enhanced Raman Effect via the Nanoshell Geometry," by J.B. Jackson, S.L. Westcott, L.R. Hirsch, J.L. West and N.J. Halas. The paper is available online at http://ojps.aip.org/aplo/.

The research was funded by the National Science Foundation, the Robert A. Welch Foundation and the Army Research Office's Multidisciplinary University Research Initiative.


Story Source:

The above story is based on materials provided by Rice University. Note: Materials may be edited for content and length.


Cite This Page:

Rice University. "Rice University Researchers Develops Nanosensor For Precision Chemical Analysis; Nanoshell Sensor Opens Door For New Methods To Exam Single Molecules." ScienceDaily. ScienceDaily, 10 January 2003. <www.sciencedaily.com/releases/2003/01/030110185639.htm>.
Rice University. (2003, January 10). Rice University Researchers Develops Nanosensor For Precision Chemical Analysis; Nanoshell Sensor Opens Door For New Methods To Exam Single Molecules. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2003/01/030110185639.htm
Rice University. "Rice University Researchers Develops Nanosensor For Precision Chemical Analysis; Nanoshell Sensor Opens Door For New Methods To Exam Single Molecules." ScienceDaily. www.sciencedaily.com/releases/2003/01/030110185639.htm (accessed September 30, 2014).

Share This



More Matter & Energy News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Do Video Games Trump Brain Training For Cognitive Boosts?

Do Video Games Trump Brain Training For Cognitive Boosts?

Newsy (Sep. 29, 2014) More and more studies are showing positive benefits to playing video games, but the jury is still out on brain training programs. Video provided by Newsy
Powered by NewsLook.com
CERN Celebrates 60 Years of Science

CERN Celebrates 60 Years of Science

Reuters - Business Video Online (Sep. 29, 2014) CERN, the European Organisation for Nuclear Research, celebrates 60 years of bringing nations together through science. As Joanna Partridge reports from inside the famous science centre it's also planning to turn the Large Hadron Collider particle accelerator back on after an upgrade. Video provided by Reuters
Powered by NewsLook.com
This 'Invisibility Cloak' Is Simpler Than Most

This 'Invisibility Cloak' Is Simpler Than Most

Newsy (Sep. 28, 2014) Researchers from the University of Rochester have created a type of invisibility cloak with simple focal lenses. Video provided by Newsy
Powered by NewsLook.com
New Corvette Can Secretly Record Convos And Get You Arrested

New Corvette Can Secretly Record Convos And Get You Arrested

Newsy (Sep. 28, 2014) The 2015 Corvette features valet mode – which allows the owner to secretly record audio and video – but in many states that practice is illegal. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins