Featured Research

from universities, journals, and other organizations

Rice University Researchers Develops Nanosensor For Precision Chemical Analysis; Nanoshell Sensor Opens Door For New Methods To Exam Single Molecules

Date:
January 10, 2003
Source:
Rice University
Summary:
Nanotechnology researchers at Rice University have demonstrated the ability to precisely control the electromagnetic field around nanoparticles, opening the door for chemical screening techniques that could allow doctors, life scientists and chemists to routinely analyze samples as small as a single molecule.

HOUSTON--JAN. 13, 2002 -- Nanotechnology researchers at Rice University have demonstrated the ability to precisely control the electromagnetic field around nanoparticles, opening the door for chemical screening techniques that could allow doctors, life scientists and chemists to routinely analyze samples as small as a single molecule.

The research is detailed in the current issue of Applied Physics Letters. It builds upon a widely used method of molecular analysis called Raman spectroscopy and capitalizes on the tunable optical properties of metal nanoshells, a novel type of nanoparticle invented at Rice.

"This result is extremely important because it is the first time that anyone has actually designed and engineered a nanosensor specifically for obtaining chemical information," said nanoshell inventor Naomi Halas, the Stanley C. Moore Professor of Electrical and Computer Engineering. "There are widespread applications for this technology in environmental science, chemistry and biosensing, and it may have very important applications in the early detection of cancer."

Scientists commonly use spectroscopy to discern detailed information about everything from distant galaxies to individual molecules. By studying the spectrum of light that an object emits, scientists can decipher which elements are present in the sample, and in some cases, how those elements relate to one another. Raman spectroscopy, in particular, allows scientists to observe the vibrational states of molecules, giving clues about where and how much molecules bend, for example, and serves as a "fingerprint" for the identification of specific molecules that may be of interest, such as environmental contaminants or chemical or biological toxins.

Scientists have long known that they could boost the Raman light emissions from a sample by a million times or more by placing the sample next to small particles of metal called colloids. Scientists have even observed single molecules with this method, but they have never been able to precisely control the electromagnetic state of the metal colloids, so results and interpretations of such studies vary widely.

Rice's research offers scientists a chance to precisely control "surface enhanced Raman scattering," or SERS. In the Rice experiments, Halas's group was able to dramatically enhance the SERS effect, making it up to a billion times more powerful in some cases.

Similar in structure to a hard-shelled chocolate candy, nanoshells are layered colloids that consist of a core of non-conducting material covered by a thin metallic shell. By varying the thickness of the conducting shell, researchers in Halas' group can precisely tune the electric and optical properties of nanoshells.

Nanoshells are so useful for enhancing SERS and for other applications because of their size and precise structure. Nanoshells are just slightly larger than the size of molecules, measuring just a few tens of nanometers, or billionths of a meter, in diameter. Tuning the properties of nanoshells gives Halas' group the ability to exert new forms of precision control at the molecular level.

The SERS research is described in the Jan. 13 issue of Applied Physics Letters in a paper titled "Controlling the Surface Enhanced Raman Effect via the Nanoshell Geometry," by J.B. Jackson, S.L. Westcott, L.R. Hirsch, J.L. West and N.J. Halas. The paper is available online at http://ojps.aip.org/aplo/.

The research was funded by the National Science Foundation, the Robert A. Welch Foundation and the Army Research Office's Multidisciplinary University Research Initiative.


Story Source:

The above story is based on materials provided by Rice University. Note: Materials may be edited for content and length.


Cite This Page:

Rice University. "Rice University Researchers Develops Nanosensor For Precision Chemical Analysis; Nanoshell Sensor Opens Door For New Methods To Exam Single Molecules." ScienceDaily. ScienceDaily, 10 January 2003. <www.sciencedaily.com/releases/2003/01/030110185639.htm>.
Rice University. (2003, January 10). Rice University Researchers Develops Nanosensor For Precision Chemical Analysis; Nanoshell Sensor Opens Door For New Methods To Exam Single Molecules. ScienceDaily. Retrieved July 27, 2014 from www.sciencedaily.com/releases/2003/01/030110185639.htm
Rice University. "Rice University Researchers Develops Nanosensor For Precision Chemical Analysis; Nanoshell Sensor Opens Door For New Methods To Exam Single Molecules." ScienceDaily. www.sciencedaily.com/releases/2003/01/030110185639.htm (accessed July 27, 2014).

Share This




More Matter & Energy News

Sunday, July 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins