Featured Research

from universities, journals, and other organizations

Cornell Scientists Create Microchip With Light-impeding Holes For Detailed, Optical Observation Of Single Molecules In Their Natural State

Date:
February 4, 2003
Source:
Cornell University
Summary:
Using a novel technique, supported largely by off-the-shelf instruments, scientists at Cornell University have for the first time optically isolated individual biological molecules in naturally occurring molecular concentrations and watched their complex behavior as they interact with a protein.

ITHACA, N.Y. -- Using a novel technique, supported largely by off-the-shelf instruments, scientists at Cornell University have for the first time optically isolated individual biological molecules in naturally occurring molecular concentrations and watched their complex behavior as they interact with a protein.

The technique, made possible by the ability of nanofabrication to produce a microchip with light-impeding holes with a diameter one-tenth of the wavelength of light, could promise a new method of DNA sequencing by which the genetic code can be "read" from a single DNA molecule.

It also promises to aid in future drug discovery because "it provides a very powerful way of looking at fluctuations and variability in behavior of individual enzyme molecules. We are seeing those variations, and they are huge," says Watt Webb, professor of applied and engineering physics at Cornell. "Observing them with such detail was hardly accessible until this experiment."

His report on watching individual molecules at work, "Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations," appears in the latest issue of the journal Science (Jan. 31, 2003). The article, which is illustrated on the cover of Science , also is authored by a multidisciplinary group of Cornell researchers: Michael Levene, an optics specialist and postdoctoral associate in applied and engineering physics; Jonas Korlach, a biologist who is a graduate student in biochemistry, molecular and cell biology; former postdoctoral associate Stephen Turner, now president and chief scientific officer of Nanofluidics, a Cornell spinoff; applied physics graduate student Mathieu Foquet: and applied and engineering physics professor Harold Craighead.

"This is an example of the possibilities provided by integrating nanostructures with biomolecules," says Craighead, who also is co-director of the National Science Foundation (NSF)-funded Nanobiotechnology Center at Cornell. "It represents a major step in the ability to isolate a single active biomolecule for study. This can be extended to other biological systems."

Until now, researchers were constrained from seeing individual molecules of an enzyme (a complex protein) interacting with other molecules under a microscope at relatively high physiological concentrations -- their natural environment -- by the wavelength of light, which limits the smallest volume of a sample that can be observed. This, in turn, limits the lowest number of molecules that can be observed in the microscope's focal spot to more than 1,000. Internal reflection microscopes have managed to reduce the number of molecules to about 100. But because this number is still far too high to detect individual molecules, significant dilution of samples is required.

The researchers have discovered a way around these limitations, and in the process reduced the sample being observed 10,000-fold to just 2,500 cubic nanometers (1 nanometer is the width of 10 hydrogen atoms, or 1 billionth of a meter), by creating a microchip that actually prevents light from passing through and illuminating the bulk of the sample. The microchip, engineered from aluminum and glass in the Cornell Nanoscale Science and Technology Facility, a NSF-funded national center, contains 2 million holes (each called a waveguide), some as tiny as 40 nanometers in diameter, or one-tenth of the wavelength of light.

Small droplets of a mixture containing enzymes and specially prepared molecules were pipetted into wells on the microchip and placed the chip in an optical microscope. Each of the chip's holes is so tiny that light from a laser beam is unable to pass through and instead is reflected by the microchip's aluminum surface, with some photons "leaking" a short distance into the hole, on the bottom of which an enzyme molecule is located.

These few leaking photons are enough to illuminate fluorescent molecules, called fluorophores, attached as "tags" to nucleotides (molecules that make up the long chains of DNA) in the sample. In this way, the researchers were able to observe, for the first time, the interaction between the ligand (the tagged nucleotide) and the enzyme in the observation volume (the region of the mixture that can be seen).

The problem until now has been seeing exactly how long an interaction between a biological molecule and an enzyme takes and how much time elapses between these interactions. This is complicated by the need to distinguish those molecules interacting with the protein and those just passing by. "A freely moving molecule will come in and out of the observation volume very quickly -- on the order of a microsecond. But if it interacts with the enzyme it will sit there for a millisecond," says Levene. "There are three orders of magnitude difference in the length of time that we see this burst of fluorescence. So now it's very easy to discriminate between random occurrences of one ligand and a ligand interacting with the enzyme."

Says Webb: "We see only one fluorescent ligand at a time, so we can now follow the kinetics [movement and behavior] in real time of individual reactions." He adds, "We can actually see the process of interaction."

The creation of the microchip, just 25 millimeters (1 inch) across and containing 25 wells, each with 90,000 tiny holes, has enabled the researchers to increase the number of ligand molecules to naturally occurring molecular concentrations. "To get to these concentrations and still observe one event at a time you need a very small volume. Otherwise you would have all those molecules milling around and we couldn't tell which was interacting with our enzyme and which wasn't," says Levene.

Why observe one molecule at a time instead of a beaker-full, asks Webb. "Because it has become apparent that the behavior of molecules is variable and there are fluctuations in the way they work," he says. "With different molecules and even within individual molecules there is erratic behavior, sometimes pausing, sometimes moving, in milliseconds of time. It is important to understand this movement," he adds, "because molecules that are erratic have less predictable behavior and are likely to be less selective."

Understanding the fluctuations of a single enzyme is particularly important for drug discovery. The Webb and Craighead research groups also are studying the application of their research to advances in DNA sequencing. The sensitivity of the nanofabricated device might permit decoding genetic information by using just one DNA molecule. The technique is compatible on a manufacturing scale and could easily be integrated with other devices, says Korlach. "It is very compact and also very scalable," he notes. This has been demonstrated, he says, by the ability to create millions of waveguides on a single microchip.

Indeed, Webb says, one sequencing run has been limited to 800 base pairs on a strand of DNA. The new technique promises the possibility of decoding continuous sequences of hundreds of thousands of base pairs at a time, he says.

The research was funded by, among others, the U.S. Department of Energy, the National Institutes of Health and the NSF.

Related World Wide Web sites: The following sites provide additional information on this news release.

o Webb Group, Cornell: http://www.drbio.cornell.edu

o Craighead Research Group, Cornell: http://www.hgc.cornell.edu

o Nanofluidics: http://www.nanofluidics.com


Story Source:

The above story is based on materials provided by Cornell University. Note: Materials may be edited for content and length.


Cite This Page:

Cornell University. "Cornell Scientists Create Microchip With Light-impeding Holes For Detailed, Optical Observation Of Single Molecules In Their Natural State." ScienceDaily. ScienceDaily, 4 February 2003. <www.sciencedaily.com/releases/2003/02/030204080219.htm>.
Cornell University. (2003, February 4). Cornell Scientists Create Microchip With Light-impeding Holes For Detailed, Optical Observation Of Single Molecules In Their Natural State. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2003/02/030204080219.htm
Cornell University. "Cornell Scientists Create Microchip With Light-impeding Holes For Detailed, Optical Observation Of Single Molecules In Their Natural State." ScienceDaily. www.sciencedaily.com/releases/2003/02/030204080219.htm (accessed April 23, 2014).

Share This



More Matter & Energy News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Is North Korea Planning Nuclear Test #4?

Is North Korea Planning Nuclear Test #4?

Newsy (Apr. 22, 2014) South Korean officials say North Korea is preparing to conduct another nuclear test, but is Pyongyang just bluffing this time? Video provided by Newsy
Powered by NewsLook.com
China Falls for 4x4s at Beijing Auto Show

China Falls for 4x4s at Beijing Auto Show

AFP (Apr. 22, 2014) The urban 4x4 is the latest must-have for Chinese drivers, whose conversion to the cult of the SUV is the talking point of this year's Beijing auto show. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Lytro Introduces 'Illum,' A Professional Light-Field Camera

Lytro Introduces 'Illum,' A Professional Light-Field Camera

Newsy (Apr. 22, 2014) The light-field photography engineers at Lytro unveiled their next innovation: a professional DSLR-like camera called "Illum." Video provided by Newsy
Powered by NewsLook.com
3 Reasons Why Harley Davidson Is Selling Tons of Epic Hogs

3 Reasons Why Harley Davidson Is Selling Tons of Epic Hogs

TheStreet (Apr. 22, 2014) Sales of motorcycles have continued to ride back from the depths of hell known as the Great Recession. Excluding scooters, sales of motorcycles increased 3% in 2013. In units, however, at 465,000 sold last year, the total remained about 50% below the peak hit in 2007. Industry leader Harley Davidson’s shareholders have benefited both by the industry recovery and positive headlines emanating from the company. Belus Capital Advisors CEO Brian Sozzi takes you beyond the headlines of the motorcycle maker. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins