Featured Research

from universities, journals, and other organizations

University Of Toronto Research Holds Promise For Optical Chip

Date:
April 29, 2003
Source:
University Of Toronto
Summary:
University of Toronto researchers have developed a hybrid plastic that can produce light at wavelengths used for fibre-optic communication, paving the way for an optical computer chip.

University of Toronto researchers have developed a hybrid plastic that can produce light at wavelengths used for fibre-optic communication, paving the way for an optical computer chip.

The material, developed by a joint team of engineers and chemists, is a plastic embedded with quantum dots - crystals just five billionths of a metre in size - that convert electrons into photons. The findings hold promise for directly linking high-speed computers with networks that transmit information using light - the largest capacity carrier of information available.

"While others have worked in quantum dots before," says investigator Ted Sargent, a professor in the Edward S. Rogers Sr. Department of Electrical and Computer Engineering, "we have shown how quantum dots can be tuned and incorporated into the right materials to address the whole set of communication wavelengths.

"Our study is the first to demonstrate experimentally that we can convert electrical current into light using a particularly promising class of nanocrystals," says Sargent, who holds the Nortel Networks-Canada Research Chair in Emerging Technologies. The study appears in the April 28 issue of the journal Applied Physics Letters.

"Our research is based on nanotechnology: engineering based on the length of a nanometer - one billionth of a metre," he says. "We are building custom materials from the ground up." Working with colleagues in Professor Gregory Scholes' group from U of T's Department of Chemistry, the team created nanocrystals of lead sulphide using a cost-effective technique that allowed them to work at room pressure and at temperatures of less than 150 degrees Celsius. Traditionally, creating the crystals used in generating light for fibre-optic communications means working in a vacuum at temperatures approaching 600 to 800 degrees Celsius.

Despite the precise way in which quantum dot nanocrystals are created, the surfaces of the crystals are unstable, Scholes explains. To stabilize them, the team placed a special layer of molecules around the nanocrystals. These crystals were combined with a semiconducting polymer material to create a thin, smooth film of the hybrid polymer.

Sargent explains that when electrons cross the conductive polymer, they encounter what are essentially "canyons," with a quantum dot located at the bottom. Electrons must fall over the edge of the "canyon" and reach the bottom before producing light. The team tailored the stabilizing molecules so they would hold special electrical properties, ensuring a flow of electrons into the light-producing "canyons."

The colours of light the researchers generated, ranging from 1.3 microns to 1.6 microns in wavelength, spanned the full range of colours used to communicate information using light.

"Our work represents a step towards the integration of many fibre-optic communications devices on one chip," says Sargent. "We've shown that our hybrid plastic can convert electric current into light, with promising efficiency and with a defined path towards further improvement. With this light source combined with fast electronic transistors, light modulators, light guides and detectors, the optical chip is in view."

The research team included Ludmila Bakueva, Sergei Musikhin, Margaret Hines, Tung-Wah Frederick Chang and Marian Tzolov from the departments of chemistry and electrical and computer engineering. The research was supported by Nortel Networks, the Natural Sciences and Engineering Research Council of Canada, Materials and Manufacturing Ontario, the Canada Foundation for Innovation, the Ontario Innovation Trust and the Canada Research Chairs Program.


Story Source:

The above story is based on materials provided by University Of Toronto. Note: Materials may be edited for content and length.


Cite This Page:

University Of Toronto. "University Of Toronto Research Holds Promise For Optical Chip." ScienceDaily. ScienceDaily, 29 April 2003. <www.sciencedaily.com/releases/2003/04/030429083704.htm>.
University Of Toronto. (2003, April 29). University Of Toronto Research Holds Promise For Optical Chip. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2003/04/030429083704.htm
University Of Toronto. "University Of Toronto Research Holds Promise For Optical Chip." ScienceDaily. www.sciencedaily.com/releases/2003/04/030429083704.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins