Featured Research

from universities, journals, and other organizations

Scientists Produce Mouse Eggs From Embryonic Stem Cells, Demonstrating Totipotency Even In Vitro

Date:
May 2, 2003
Source:
University Of Pennsylvania
Summary:
Researchers at the University of Pennsylvania have created the first mammalian gametes grown in vitro directly from embryonic stem cells. The work, in which mouse stem cells placed in Petri dishes -- without any special growth or transcription factors -- grew into oocytes and then into embryos, will be reported this week on the web site of the journal Science.

PHILADELPHIA -- Researchers at the University of Pennsylvania have created the first mammalian gametes grown in vitro directly from embryonic stem cells. The work, in which mouse stem cells placed in Petri dishes -- without any special growth or transcription factors -- grew into oocytes and then into embryos, will be reported this week on the web site of the journal Science.

Related Articles


The results demonstrate that even outside the body embryonic stem cells remain totipotent, or capable of generating any of the body's tissues, said lead researcher Hans R. Schöler of Penn's School of Veterinary Medicine.

"Most scientists have thought it impossible to grow gametes from stem cells outside the body, since earlier efforts have yielded only somatic cells," said Schöler, professor of reproduction medicine and director of Penn's Center for Animal Transgenesis and Germ Cell Research. "We found that not only can mouse embryonic stem cells produce oocytes, but that these oocytes can then enter meiosis, recruit adjacent cells to form structures similar to the follicles that surround and nurture natural mouse eggs, and develop into embryos."

Schöler said oocyte development in vitro may offer a new way for embryonic stem cells to be produced artificially, sidestepping the ethical concerns articulated by President Bush and others. Implanting a regular nucleus from any of the body's cells into such an oocyte would yield a totipotent stem cell.

The findings may force legal revisions in nations such as Germany whose lawmakers, assuming that stem cells' potency outside the body was limited, have passed legislation banning research with totipotent stem cells.

The Penn scientists pulled off this feat using a gene called Oct4 as a genetic marker. After the stem cells were plated in a regular Petri dish -- densely but without special feeder cells or growth factors -- the scientists used fluorescent markers linked to Oct4 and other telltale genes to assay oocyte development. After 12 days in culture, the cells organized into colonies of variable size. Shortly thereafter, individual cells detached from these colonies.

"These germ cells then accumulated a coating of cells similar to the follicles surrounding mammalian eggs," Schöler said. "Starting on day 26, oocyte-like cells were released into the culture -- similar to ovulation -- and by day 43, embryo-like structures arose through parthenogenesis, or spontaneous reproduction without sperm."

In the experiment described this week in Science, both male- and female-derived stem cells developed into female gametes. Schöler and colleagues now plan to test whether oocytes developed in vitro can be fertilized.

"We would like to use these oocytes as a basis for therapeutic cloning, and hope that our results can be replicated with human embryonic stem cells," Schöler said.

Schöler was joined in the research by Karin Hübner, James Kehler, Rolland Reinbold, Rabindranath de la Fuente and Michele Boiani of Penn's School of Veterinary Medicine; Lane K. Christenson, Jennifer Wood and Jerome Strauss III from Penn's School of Medicine; and Guy Fuhrmann of the Centre de Neurochimie in France. The work was funded by the National Institutes of Health, the Marion Dilley and David George Jones Funds, the Commonwealth and General Assembly of Pennsylvania and the Association pour la Recherche sur la Cancer.


Story Source:

The above story is based on materials provided by University Of Pennsylvania. Note: Materials may be edited for content and length.


Cite This Page:

University Of Pennsylvania. "Scientists Produce Mouse Eggs From Embryonic Stem Cells, Demonstrating Totipotency Even In Vitro." ScienceDaily. ScienceDaily, 2 May 2003. <www.sciencedaily.com/releases/2003/05/030502075509.htm>.
University Of Pennsylvania. (2003, May 2). Scientists Produce Mouse Eggs From Embryonic Stem Cells, Demonstrating Totipotency Even In Vitro. ScienceDaily. Retrieved March 30, 2015 from www.sciencedaily.com/releases/2003/05/030502075509.htm
University Of Pennsylvania. "Scientists Produce Mouse Eggs From Embryonic Stem Cells, Demonstrating Totipotency Even In Vitro." ScienceDaily. www.sciencedaily.com/releases/2003/05/030502075509.htm (accessed March 30, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, March 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Soda, Salt and Sugar: The Next Generation of Taxes

Soda, Salt and Sugar: The Next Generation of Taxes

Washington Post (Mar. 30, 2015) — Denisa Livingston, a health advocate for the Diné Community Advocacy Alliance, and the Post&apos;s Abby Phillip discuss efforts around the country to make unhealthy food choices hurt your wallet as much as your waistline. Video provided by Washington Post
Powered by NewsLook.com
UnitedHealth Buys Catamaran

UnitedHealth Buys Catamaran

Reuters - Business Video Online (Mar. 30, 2015) — The $12.8 billion merger will combine the U.S.&apos; third and fourth largest pharmacy benefit managers. Analysts say smaller PBMs could also merge. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins