Featured Research

from universities, journals, and other organizations

Mayo Clinic Researchers Discover Protective Gene Mutation In Some HIV-infected Patients; May Explain How HIV Progresses To AIDS

Date:
May 16, 2003
Source:
Mayo Clinic
Summary:
Mayo Clinic researchers have identified a naturally occurring "good guy" for patients infected with HIV. It is a helpful gene mutation that impairs the HIV virus' cell-killing machinery, thus preserving immune system function. Moreover, Mayo's experiments in mice suggest that the presence or absence of this mutation in the gene known as Vpr may play a central role in determining which HIV-infected patients develop full-blown, fatal AIDS.

ROCHESTER, Minn. -- Mayo Clinic researchers have identified a naturally occurring "good guy" for patients infected with HIV. It is a helpful gene mutation that impairs the HIV virus' cell-killing machinery, thus preserving immune system function. Moreover, Mayo's experiments in mice suggest that the presence or absence of this mutation in the gene known as Vpr may play a central role in determining which HIV-infected patients develop full-blown, fatal AIDS.

Related Articles


If these findings hold up, this "good guy" mutation could lead to new AIDS therapies based upon Vpr inhibitors to reduce immune-system cell death during HIV infection. By preserving these immune system cells -- known as T cells -- the body would then not be defenseless against the many infections from which AIDS patients eventually die.

Says Andrew Badley, M.D., senior author of the study that appears in the May 15th Journal of Clinical Investigation, "For seven years our lab has been studying how HIV infection causes T cells to die. We had come to suspect that the patients who live with the replicating virus -- who are referred to as long-term nonprogressive HIV patients because they don't die from this normally fatal disease -- had abnormalities of the programmed cell-death response. In this study we found that, in fact, they have a mutation on the Vpr gene that impairs the cell-killing mechanism of the HIV virus."

Significance of Mayo's Research

The Mayo Clinic work provides laboratory evidence that confirms a hypothesis long held by many researchers around the world about how HIV infection progresses to finally overwhelm the body with the opportunistic infections that characterize AIDS. Mayo Clinic's conclusion: The principal mechanism by which HIV infection breaks down the body's immune system is by a biological process called "apoptosis" (a-pop-TOW-sis) or, programmed cell death.

Background: Why Vpr?

It has been an intriguing mystery since the beginning of the AIDS epidemic: How do some HIV-infected patients -- approximately 25-30 percent -- naturally thwart the development of Aids? These patients get infected with HIV and stay infected, but don't get AIDS. Says Dr. Badley, "Clearly, something is going on to help these long-term nonprogressors survive the infection -- but what? Previous studies have explained some of it -- but not all."

The Mayo Clinic group focused on a Vpr gene associated with the HIV virus because it was known to play a role in programmed cell death. When researchers compared the Vpr genes from some of their typical AIDS patients with the Vpr genes of long-term nonprogressors, they discovered the long-term nonprogressors' Vpr was, in fact, different: mutated. But what was the function of the mutation? This led to their next level of inquiry.

Discovering the Role of the Mutant Vpr

In the lab, Mayo Clinic researchers engineered HIV virus and tested two versions. One contained normal Vpr and one contained the mutant Vpr. Then they infected cultured cells grown in laboratory glassware with the two strains, paying special attention to how the mutant Vpr initiated cell death. "Lo and behold," says Dr. Badley, "the mutant doesn't kill as well as the normal, or wild type, Vpr. That was neat to find."

Earlier experiments by other investigators had shown how normal Vpr causes cell death. So the Mayo Clinic researchers examined mutant Vpr on a molecular level to see if it works the same way. It binds to the same target as normal Vpr, but doesn't trigger the same cell death cascade.

This provocative finding led to a final series of experiments: looking at the protein product that the mutant gene makes. Researchers first measured cell death caused by the protein in cell culture, then in live mice. Results in both lab dish and in mice were the same: impaired cell-death mechanism in the presence of the mutant-gene's protein.

Says Dr. Badley, "This particular experiment ends here, but our work continues because Mayo Clinic has a multidisciplinary HIV clinic and a number of investigators interested in novel treatment approaches and strategies toward HIV disease. By further exploring the role of Vpr we may be looking at a mechanism by which patients with long-term nonprogressive HIV disease are able to stay disease free. That information could eventually translate into new treatments."


Story Source:

The above story is based on materials provided by Mayo Clinic. Note: Materials may be edited for content and length.


Cite This Page:

Mayo Clinic. "Mayo Clinic Researchers Discover Protective Gene Mutation In Some HIV-infected Patients; May Explain How HIV Progresses To AIDS." ScienceDaily. ScienceDaily, 16 May 2003. <www.sciencedaily.com/releases/2003/05/030516083554.htm>.
Mayo Clinic. (2003, May 16). Mayo Clinic Researchers Discover Protective Gene Mutation In Some HIV-infected Patients; May Explain How HIV Progresses To AIDS. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2003/05/030516083554.htm
Mayo Clinic. "Mayo Clinic Researchers Discover Protective Gene Mutation In Some HIV-infected Patients; May Explain How HIV Progresses To AIDS." ScienceDaily. www.sciencedaily.com/releases/2003/05/030516083554.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Why Your Boss Should Let You Sleep In

Why Your Boss Should Let You Sleep In

Newsy (Dec. 17, 2014) According to research out of the University of Pennsylvania, waking up for work is the biggest factor that causes Americans to lose sleep. Video provided by Newsy
Powered by NewsLook.com
Flu Outbreak Closing Schools in Ohio

Flu Outbreak Closing Schools in Ohio

AP (Dec. 17, 2014) A wave of flu illnesses has forced some Ohio schools to shut down over the past week. State officials confirmed one pediatric flu-related death, a 15-year-old girl in southern Ohio. (Dec. 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins