Featured Research

from universities, journals, and other organizations

Method Used By Enzymes In Development Of Colon Cancer Described By UCSD Researchers

Date:
July 4, 2003
Source:
University Of California - San Diego
Summary:
The precise molecular interactions that allow cyclooxygenase-2 (COX-2) enzymes to promote the development of colon cancer have been described for the first time by researchers at the University of California, San Diego (UCSD) School of Medicine.

The precise molecular interactions that allow cyclooxygenase-2 (COX-2) enzymes to promote the development of colon cancer have been described for the first time by researchers at the University of California, San Diego (UCSD) School of Medicine.

In lab studies with human and rat cells, the investigators defined the multiple steps initiated by COX-2, including a prominent role for a molecule called cyclic adenosine monophosphate (cAMP) and proteins called Inhibitors of Apoptosis (IAPs). The result of these molecular interactions is suppression of the body's natural cell-killing process, resulting in uncontrolled cell growth and eventual colon cancer.

Published online the week of June 30, 2003 in the journal Proceedings of the National Academy of Sciences, the findings also explain how aspirin and other nonsteroidal anti-inflammatory drugs (NSAIDs) can reduce the incidence of colon cancer by inhibiting COX-2 and allowing the body to resume its normal process of killing unwanted or harmful cells.

Although colon cancer was studied, the findings have potential implications for understanding non-intestinal cancers where COX-2 or related enzymes play a role similar to that in colorectal cancer, said the paper's senior author, Paul Insel, M.D., UCSD professor of pharmacology and medicine. These may include certain lung cancers, prostate cancer, head and neck squamous cell carcinomas, and some breast cancers.

In addition, by pinpointing each step in the molecular chain-of-events initiated by COX-2 enzymes, the study offers potential new targets for drug therapies that have fewer side effects than NSAIDs, which can cause problems such as stomach irritation.

Prior to these findings, researchers have known that one of the earliest molecular events in 80 percent of colon cancers is over expression of COX-2 enzymes. Although clinical studies have provided unequivocal evidence that long-term use of NSAIDs inhibited COX-2 enzymes and was associated with a 40 to 50 percent reduction in the incidence of colon cancers, the precise mechanism of action was not understood.

Lars Eckmann, M.D., UCSD assistant professor of medicine and a co-author of the paper, explained that researchers have known that normal cell death is inhibited in colon cancer, resulting in overgrowth of harmful cells. The new findings determine how this happens.

In the intestines and other tissue, cells are generated and then die by a normal process called apoptosis. In the normal intestine, cells originate deep within the tissue, then migrate to the surface, where they undergo apoptotic cell death. In colon cancer, however, the cells "hang around too long and forget how to die," Eckmann explained.

A complicated process, apoptosis is a result of balanced molecular actions taking place at two different starting points. An "extrinsic" pathway, also called the death receptor pathway, activates one set of molecules. A second, "intrinsic" pathway is mediated by small cellular organelles called mitochondria. Like a letter "Y," the two pathways meet and join as they cause chemical reactions down a final pathway, resulting in a specific cell's death.

The research team headed by Insel and Eckmann used sophisticated laboratory analysis to determine that apoptosis was interrupted by IAP, an Inhibitor of Apoptosis Protein, at the point where the two pathways merge.

Specifically, the inhibition of apoptosis begins when COX-2 enzymes lead to the formation of prostaglandins, hormone-like chemical messengers that normally act as cell regulators for smooth muscle relaxation and regulation of blood pressure. On the road to colon cancer, however, prostaglandins trigger an increased production of cAMP, which is known to stimulate a variety of cellular activities. In this case, cAMP is able to block apoptosis on both pathways by activating IAPs.

The study was funded by grants from the National Institutes of Health, the Rebecca and John Moores UCSD Cancer Center, and the Stein Institute for Research on Aging. In addition to Insel and Eckmann, authors of the paper were first author Hiroshi Nishihara, M.D., Ph.D., UCSD Department of Pharmacology, and Shinae Kizaka-Kondoh, M.D., Ph.D., Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Japan.


Story Source:

The above story is based on materials provided by University Of California - San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University Of California - San Diego. "Method Used By Enzymes In Development Of Colon Cancer Described By UCSD Researchers." ScienceDaily. ScienceDaily, 4 July 2003. <www.sciencedaily.com/releases/2003/07/030701223231.htm>.
University Of California - San Diego. (2003, July 4). Method Used By Enzymes In Development Of Colon Cancer Described By UCSD Researchers. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2003/07/030701223231.htm
University Of California - San Diego. "Method Used By Enzymes In Development Of Colon Cancer Described By UCSD Researchers." ScienceDaily. www.sciencedaily.com/releases/2003/07/030701223231.htm (accessed July 29, 2014).

Share This




More Health & Medicine News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
$15B Deal on Vets' Health Care Reached

$15B Deal on Vets' Health Care Reached

AP (July 28, 2014) A bipartisan deal to improve veterans health care would authorize at least $15 billion in emergency spending to fix a veterans program scandalized by long patient wait times and falsified records. (July 28) Video provided by AP
Powered by NewsLook.com
Two Americans Contract Ebola in Liberia

Two Americans Contract Ebola in Liberia

Reuters - US Online Video (July 28, 2014) Two American aid workers in Liberia test positive for Ebola while working to combat the deadliest outbreak of the virus ever. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins