Featured Research

from universities, journals, and other organizations

Method Used By Enzymes In Development Of Colon Cancer Described By UCSD Researchers

Date:
July 4, 2003
Source:
University Of California - San Diego
Summary:
The precise molecular interactions that allow cyclooxygenase-2 (COX-2) enzymes to promote the development of colon cancer have been described for the first time by researchers at the University of California, San Diego (UCSD) School of Medicine.

The precise molecular interactions that allow cyclooxygenase-2 (COX-2) enzymes to promote the development of colon cancer have been described for the first time by researchers at the University of California, San Diego (UCSD) School of Medicine.

Related Articles


In lab studies with human and rat cells, the investigators defined the multiple steps initiated by COX-2, including a prominent role for a molecule called cyclic adenosine monophosphate (cAMP) and proteins called Inhibitors of Apoptosis (IAPs). The result of these molecular interactions is suppression of the body's natural cell-killing process, resulting in uncontrolled cell growth and eventual colon cancer.

Published online the week of June 30, 2003 in the journal Proceedings of the National Academy of Sciences, the findings also explain how aspirin and other nonsteroidal anti-inflammatory drugs (NSAIDs) can reduce the incidence of colon cancer by inhibiting COX-2 and allowing the body to resume its normal process of killing unwanted or harmful cells.

Although colon cancer was studied, the findings have potential implications for understanding non-intestinal cancers where COX-2 or related enzymes play a role similar to that in colorectal cancer, said the paper's senior author, Paul Insel, M.D., UCSD professor of pharmacology and medicine. These may include certain lung cancers, prostate cancer, head and neck squamous cell carcinomas, and some breast cancers.

In addition, by pinpointing each step in the molecular chain-of-events initiated by COX-2 enzymes, the study offers potential new targets for drug therapies that have fewer side effects than NSAIDs, which can cause problems such as stomach irritation.

Prior to these findings, researchers have known that one of the earliest molecular events in 80 percent of colon cancers is over expression of COX-2 enzymes. Although clinical studies have provided unequivocal evidence that long-term use of NSAIDs inhibited COX-2 enzymes and was associated with a 40 to 50 percent reduction in the incidence of colon cancers, the precise mechanism of action was not understood.

Lars Eckmann, M.D., UCSD assistant professor of medicine and a co-author of the paper, explained that researchers have known that normal cell death is inhibited in colon cancer, resulting in overgrowth of harmful cells. The new findings determine how this happens.

In the intestines and other tissue, cells are generated and then die by a normal process called apoptosis. In the normal intestine, cells originate deep within the tissue, then migrate to the surface, where they undergo apoptotic cell death. In colon cancer, however, the cells "hang around too long and forget how to die," Eckmann explained.

A complicated process, apoptosis is a result of balanced molecular actions taking place at two different starting points. An "extrinsic" pathway, also called the death receptor pathway, activates one set of molecules. A second, "intrinsic" pathway is mediated by small cellular organelles called mitochondria. Like a letter "Y," the two pathways meet and join as they cause chemical reactions down a final pathway, resulting in a specific cell's death.

The research team headed by Insel and Eckmann used sophisticated laboratory analysis to determine that apoptosis was interrupted by IAP, an Inhibitor of Apoptosis Protein, at the point where the two pathways merge.

Specifically, the inhibition of apoptosis begins when COX-2 enzymes lead to the formation of prostaglandins, hormone-like chemical messengers that normally act as cell regulators for smooth muscle relaxation and regulation of blood pressure. On the road to colon cancer, however, prostaglandins trigger an increased production of cAMP, which is known to stimulate a variety of cellular activities. In this case, cAMP is able to block apoptosis on both pathways by activating IAPs.

The study was funded by grants from the National Institutes of Health, the Rebecca and John Moores UCSD Cancer Center, and the Stein Institute for Research on Aging. In addition to Insel and Eckmann, authors of the paper were first author Hiroshi Nishihara, M.D., Ph.D., UCSD Department of Pharmacology, and Shinae Kizaka-Kondoh, M.D., Ph.D., Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Japan.


Story Source:

The above story is based on materials provided by University Of California - San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University Of California - San Diego. "Method Used By Enzymes In Development Of Colon Cancer Described By UCSD Researchers." ScienceDaily. ScienceDaily, 4 July 2003. <www.sciencedaily.com/releases/2003/07/030701223231.htm>.
University Of California - San Diego. (2003, July 4). Method Used By Enzymes In Development Of Colon Cancer Described By UCSD Researchers. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2003/07/030701223231.htm
University Of California - San Diego. "Method Used By Enzymes In Development Of Colon Cancer Described By UCSD Researchers." ScienceDaily. www.sciencedaily.com/releases/2003/07/030701223231.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins