Featured Research

from universities, journals, and other organizations

Protein Holds Promise As New Diabetes Drug Target

Date:
July 18, 2003
Source:
Vanderbilt University Medical Center
Summary:
Scientists at the pharmaceutical company Hoffman-La Roche have discovered a chemical compound that activates the glucokinase enzyme and that could lead to a new medication for type 2 diabetes.

Scientists at the pharmaceutical company Hoffman-La Roche have discovered a chemical compound that activates the glucokinase enzyme and that could lead to a new medication for type 2 diabetes. Their work, reported in the July 18 issue of Science, builds on basic science performed at Vanderbilt University Medical Center that started 18 years ago.

When Dr. Mark A. Magnuson arrived at Vanderbilt in 1985 as a postdoctoral fellow, he took on a challenging project – cloning the gene for the enzyme glucokinase. At the time, it was known that glucokinase was important for the metabolism of glucose, the sugar that climbs dangerously high in the blood of patients with diabetes. The cloning project was a success, and now, with the work by Hoffman-La Roche, glucokinase is taking center stage as a new drug target for type 2 diabetes.

"There have not been that many new drugs for the treatment of diabetes ever discovered, and this one is unique in its mechanism of action," said Magnuson, assistant vice chancellor for Research and a co-author of the report. "By turning on glucokinase, this novel compound improves insulin secretion by the pancreas and stimulates glucose usage by the liver, both of which are abnormal in diabetes." Magnuson cautions that it's too early to tell what the real value of a glucokinase-activating drug might be. Clinical trials are still in the planning stage. "It has dramatic effects in animals, suggesting it has the potential to be a very powerful new drug," he said.

The promise of such a drug comes from its target, glucokinase. This enzyme – a "glucose sensor" – plays a key role in maintaining sugar balance in the body. It acts mainly in the pancreatic beta cell, where it is important for insulin secretion, and in the liver, where it participates in how glucose is used and stored. Because both insulin secretion and glucose utilization by the liver are defective in patients with diabetes, a single drug that improves both functions is an attractive possibility, Magnuson said.

In the years since they cloned the glucokinase gene, Magnuson and Dr. Daryl K. Granner, director of the Vanderbilt Diabetes Center – joined by several other Vanderbilt laboratories along the way – have ferreted out nuances of how the enzyme works. Most recently, Magnuson and colleagues have genetically engineered mice that lack glucokinase only in selected tissues, like the beta cell or liver, to understand tissue-specific roles and regulation.

"Studies performed at Vanderbilt were essential for demonstrating the importance of this enzyme," Magnuson said.

After the glucokinase gene was cloned, other investigators identified mutations in the human gene. Mutations that cause the enzyme not to function properly have been linked to a form of diabetes called maturity-onset diabetes of the young type 2 (MODY2). And mutations that activate glucokinase – much like the newly discovered compound – cause persistent hyperinsulinemic hypoglycemia of infancy, a condition characterized by high insulin and low blood glucose. These observations solidified the view that glucokinase would be an ideal target for an antidiabetic drug, Magnuson said.

Even so, he added, "no one ever thought we would find a drug that directly targets the enzyme and activates it." The investigators at Hoffman-La Roche were actually screening for compounds that would work in an indirect way to alter glucokinase activity when they found the chemical described in the Science report.

"It was a serendipitous discovery," Magnuson said. "One compound in one of their chemical libraries (of over 120,000 compounds) happened to bind to and activate glucokinase." Other companies that have also been searching for compounds to affect glucokinase activity have not been so fortunate, he said.

The Hoffman-La Roche team demonstrated that the new compound enhances insulin release from isolated rat pancreatic islets. It also lowers blood glucose levels and improves results of oral glucose tolerance tests in rats and mice with diabetes.

Though it will be several more years before clinical trials begin to reveal whether or not drugs based on this compound are effective therapies for diabetes, Magnuson marvels at the progress that's been made since the glucokinase cloning project first got started.

"It really emphasizes the value of basic science research, and how studying enzymes and the mechanisms for regulation of blood glucose can yield important clues and unpredicted things that pay out over time," he said. "Now we're beginning to see the promise of some very basic science research that was done here at Vanderbilt."


Story Source:

The above story is based on materials provided by Vanderbilt University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Vanderbilt University Medical Center. "Protein Holds Promise As New Diabetes Drug Target." ScienceDaily. ScienceDaily, 18 July 2003. <www.sciencedaily.com/releases/2003/07/030718084234.htm>.
Vanderbilt University Medical Center. (2003, July 18). Protein Holds Promise As New Diabetes Drug Target. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2003/07/030718084234.htm
Vanderbilt University Medical Center. "Protein Holds Promise As New Diabetes Drug Target." ScienceDaily. www.sciencedaily.com/releases/2003/07/030718084234.htm (accessed July 25, 2014).

Share This




More Health & Medicine News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins