Featured Research

from universities, journals, and other organizations

Duke Researchers Discover Power Behind Molecular Motors

Date:
October 16, 2003
Source:
Duke University Medical Center
Summary:
After having demonstrated how "molecular motors" move within cells, a team of researchers led by a Duke University Medical Center scientist now believe they have discovered the power stroke that drives these motors.

DURHAM, N.C. -- After having demonstrated how "molecular motors" move within cells, a team of researchers led by a Duke University Medical Center scientist now believe they have discovered the power stroke that drives these motors.

Molecular motors are proteins made up of amino acids like any other protein in a cell. Unlike other proteins, however, they move along cellular highways of tiny filaments, called microtubules, as they transport nutrients around the cell or herd chromosomes during cell division.

Malfunctioning molecular motors might be responsible for some diseases such as Down's syndrome caused by incorrect distribution of chromosomes during cell division. By understanding how motors work, how they organize chromosomes and how they lead the cell through the division process, researchers hope to be able to understand what causes these diseases and how to prevent them.

"I believe the findings of this study represent a breakthrough in our understanding of molecular motors and how they function," said Duke cell biologist Sharyn Endow, Ph.D., who published the results of the Duke research today (Oct. 16, 2003) in the European Molecular Biology Organization (EMBO) journal. She collaborated with Hee-Won Park, Ph.D., a crystallographer at St. Jude Children's Research Hospital, Memphis to obtain the new results.

"One of the major problems facing us in the field of molecular motor research is figuring out how the motor converts chemical energy into work or movement along microtubules," she continued. "We believe we have found the mechanism for the force-producing stroke that directs the motor."

In her experiments, Endow focused on a particular motor molecule called Ncd (nonclaret disjunctional), which she discovered more than a dozen years ago. Ncd belongs to a family of molecular motors called kinesins. The Ncd motor consists of a coiled-coil "neck/stalk" region that connects two "heads," making up the molecular motor.

The researchers used two techniques -- x-ray crystallography and cryo-electron microscropy -- to visualize the structure of the Ncd motor at different stages of its movement along the microtubules. Endow explained that this movement occurs during the breakdown of ATP (adenosine triphosphate) that occurs in all cells.

ATP is a storage repository of energy for the cell – liberating energy when the chemical bonds that holds one of the phosphates on the molecule is broken by a process known as hydrolysis.

Endow found that during this process of ATP hydrolysis, the coiled-coil region of the motor changed in angle, or conformation. As a result of this conformational change, the coiled-coil region rotates relative to one of the two heads, amplifying the force produced by the motor, resulting in the working stroke of the motor.

"We were able to come up with a new crystal structure which showed that the coiled-coil domain undergoes a large rotational movement that could represent the force-producing stroke of the motor," Endow explained. "The stalk appears to be rigid and may act like a lever. This is in contrast to models for other kinesin motors, whose movement appears to be more rachet-like than lever-like."

From the time Endow first discovered Ncd in fruit flies, the little motor has been an enigma. At the time, it was the first molecular motor of its kind that moved toward the more stable, or "minus" end of microtubules. The other kinesin motor proteins moved toward the fast-growing, or "plus" end.

Endow previously showed that the normal Ncd motor moves only toward the minus end of the microtubule and that it also rotates to the right around the tubule. She made Ncd mutations that disrupted the sense of direction and created for the first time a motor that is equally likely to move to the plus end as to the minus end, and it rotates either to the right or left.

While Ncd was discovered in fruit flies, similar motors operate in all animals, including people, Endow said.

"Our hope is that by understanding how these molecular motors work, we will be able to identify why sometimes things go wrong in the reproductive process," she said. "Right now it is very difficult to do these experiments with animals more advanced than flies because they make eggs internally. That makes it difficult to observe the process. But using flies, in which the process is thought to be closely related to higher animals, we can identify the components and learn how they work."

The research was supported by the National Institutes of Health, the Human Frontiers Science Program, the St. Jude Children's Research Hospital Cancer Center and the American Lebanese Syrian Associated Charities.


Story Source:

The above story is based on materials provided by Duke University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Duke University Medical Center. "Duke Researchers Discover Power Behind Molecular Motors." ScienceDaily. ScienceDaily, 16 October 2003. <www.sciencedaily.com/releases/2003/10/031016063217.htm>.
Duke University Medical Center. (2003, October 16). Duke Researchers Discover Power Behind Molecular Motors. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2003/10/031016063217.htm
Duke University Medical Center. "Duke Researchers Discover Power Behind Molecular Motors." ScienceDaily. www.sciencedaily.com/releases/2003/10/031016063217.htm (accessed April 18, 2014).

Share This



More Health & Medicine News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Holy Grail' Of Weight Loss? New Find Could Be It

'Holy Grail' Of Weight Loss? New Find Could Be It

Newsy (Apr. 18, 2014) In a potential breakthrough for future obesity treatments, scientists have used MRI scans to pinpoint brown fat in a living adult for the first time. Video provided by Newsy
Powered by NewsLook.com
Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com
Obama: 8 Million Healthcare Signups

Obama: 8 Million Healthcare Signups

AP (Apr. 17, 2014) President Barack Obama gave a briefing Thursday announcing 8 million people have signed up under the Affordable Care Act. He blasted continued Republican efforts to repeal the law. (April 17) Video provided by AP
Powered by NewsLook.com
Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins