Featured Research

from universities, journals, and other organizations

Hand-to-ear Link In Brain Established After Minutes Of Piano Learning

Date:
October 21, 2003
Source:
BioMed Central
Summary:
Contrary to what your music teacher told you, it does not take decades of piano practice to learn to play phrases on the piano without looking at your fingers. A brain map linking finger movements with particular notes begins to form within minutes of starting training, according to research published this week in BMC Neuroscience.

Contrary to what your music teacher told you, it does not take decades of piano practice to learn to play phrases on the piano without looking at your fingers. A brain map linking finger movements with particular notes begins to form within minutes of starting training, according to research published this week in BMC Neuroscience.

Recent brain imaging studies of professional musicians have demonstrated that silent tapping of musical phrases can stimulate auditory areas of the cortex and hearing music can stimulate areas of the motor cortex. Moreover, according to anecdotal evidence, hearing music can cause pianists to move their fingers involuntarily.

To find out how fast links between these two brain areas could be formed Marc Bangert and Eckart Altenmόller, from the Institute of Music Physiology and Musicians' Medicine in Hanover, examined the effects on the brain of taking up a musical instrument from scratch. Their results showed that patterns of brain activity when listening to music or silently tapping a keyboard could be altered after just 20 minutes of piano practice. These changes were enhanced after five weeks of training.

Two groups of beginner pianists undertook ten 20-minute training sessions over the course of five weeks. In these sessions they learned to play back musical phrases they heard on a digital piano. No visual or verbal cues like tone names or score notation, or even their own hands visible on the piano keys, were allowed during training. This policy ensured that the training exercise involved only auditory and motor skills.

The two groups differed slightly in their training regime. The first group (the 'map' group) used digital pianos where the five neighbouring keys had appropriate notes assigned to them. The second group (the 'no-map' group) used pianos where the assignment of notes to the five keys was 'shuffled' after each training trial. The researchers explain: "The 'no-map' group was not given any chance to figure out any coupling between fingers and notes, except the temporal coincidence of keystroke and sound. In other words: these subjects were not given any opportunity to establish an internal 'map' between motor events and auditory pitch targets."

Before and after the first session and after the fifth and tenth sessions the novice pianists were asked to listen passively to short musical phrases and, in a separate test, to arbitrarily press keys on a soundless piano keyboard. During these test sessions the researchers monitored the electrical activity of the students' brains in 30 different places using a technique called electroencephalography. This enabled the researchers to build up maps of brain activity.

The patterns of brain activity after five sessions varied considerably between the two groups. For example the 'map' group activated the motor area for the hand when they were listening to music, whereas the 'no-map' group did not. The researchers also identified another area of the brain, in the right anterior region, which was more active in the 'map' group than the 'non-map' group. This area could be where the note to piano key 'map' is established. Previous research has suggested that this area is involved in the perception of melodic and harmonic pitch sequences. Bangert says, "Interestingly, the respective area in the left hemisphere is where you would find Broca's area, where much of our speech processing happens."

###

BMC Neuroscience (http://www.biomedcentral.com/bmcneurosci) is published by BioMed Central (http://www.biomedcentral.com), an independent online publishing house committed to providing immediate free access to peer-reviewed biological and medical research. This commitment is based on the view that open access to research is essential to the rapid and efficient communication of science. In addition to open-access original research, BioMed Central also publishes reviews and other subscription-based content.


Story Source:

The above story is based on materials provided by BioMed Central. Note: Materials may be edited for content and length.


Cite This Page:

BioMed Central. "Hand-to-ear Link In Brain Established After Minutes Of Piano Learning." ScienceDaily. ScienceDaily, 21 October 2003. <www.sciencedaily.com/releases/2003/10/031021063737.htm>.
BioMed Central. (2003, October 21). Hand-to-ear Link In Brain Established After Minutes Of Piano Learning. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2003/10/031021063737.htm
BioMed Central. "Hand-to-ear Link In Brain Established After Minutes Of Piano Learning." ScienceDaily. www.sciencedaily.com/releases/2003/10/031021063737.htm (accessed July 24, 2014).

Share This




More Mind & Brain News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

China's Ageing Millions Look Forward to Bleak Future

China's Ageing Millions Look Forward to Bleak Future

AFP (July 24, 2014) — China's elderly population is expanding so quickly that children struggle to look after them, pushing them to do something unexpected in Chinese society- move their parents into a nursing home. Duration: 02:07 Video provided by AFP
Powered by NewsLook.com
Idaho Boy Helps Brother With Disabilities Complete Triathlon

Idaho Boy Helps Brother With Disabilities Complete Triathlon

Newsy (July 23, 2014) — An 8-year-old boy helped his younger brother, who has a rare genetic condition that's confined him to a wheelchair, finish a triathlon. Video provided by Newsy
Powered by NewsLook.com
Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Newsy (July 22, 2014) — The 83 new genetic markers could open dozens of new avenues for schizophrenia treatment research. Video provided by Newsy
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) — The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins