Featured Research

from universities, journals, and other organizations

Unique Molecular Structure Offers Insight Into Nanoscale Self-assembly, Solution Chemistry

Date:
November 6, 2003
Source:
Brookhaven National Laboratory
Summary:
Scientists at the U.S. Department of Energy's Brookhaven National Laboratory and the University of Bielefeld, Germany, have discovered a new type of hollow spherical vesicles formed by large-scale, wheel-shaped inorganic molecules.

UPTON, NY -- Scientists at the U.S. Department of Energy's Brookhaven National Laboratory and the University of Bielefeld, Germany, have discovered a new type of hollow spherical vesicles formed by large-scale, wheel-shaped inorganic molecules. These vesicles, described in the November 6, 2003, issue of Nature, represent a new kind of self-assembly in nature with implications for the emerging field of nanoscience as well the solution behavior of other types of particles or systems previously thought to be unrelated.

Related Articles


"These vesicles are totally different from the common vesicles formed by other types of molecules, such as the biolipids of cell membranes and surfactants used in soaps," said Brookhaven physicist Tianbo Liu, lead author on the paper. In those cases, he explains, the molecules have both hydrophilic ("water-loving") and hydrophobic ("water-hating") parts. The water-hating portions all line up facing one another, leaving the water-loving parts exposed to the surface so the entire vesicle can exist in an aqueous environment.

But the molecules described by Liu and his co-authors -- giant wheel-shaped polyoxomolybdate (POM) molecules, composed of hundreds or even thousands of molybdenum and oxygen atoms -- have no hydrophobic parts. Each wheel-shaped molecule also carries some negative charge, which should make the wheels repel one another. Yet, by using light scattering and transmission electron microscope (TEM) techniques, Liu and his coworkers found that, in dilute solution, more than 1,000 of these wheel-shaped POMs associate and evenly distribute onto the surface of 90-nanometer-wide hollow spheres. The TEM measurements were performed by Brookhaven biologist Huilin Li.

The study helps elucidates how these spheres form. It turns out that hydrogen bonds formed between water molecules play an important role. "In the nanometer-size spaces between the wheel molecules, the viscosity of water could increase by several orders of magnitude," says Liu. This happens, he explains, because the water molecules are confined in the tiny spaces, so hydrogen bonds readily form between adjacent water molecules. "The properties of this heavily hydrogen-bonded water are more like those of ice than liquid water," he adds. "So the water between the wheel-shaped molecules acts like a glue that overcomes the repulsive electrostatic forces and 'freezes' the wheels in place."

The electrically charged POM molecules can be thought of as large, single, inorganic ions, but also as polyelectrolytes -- substances made of repeating subunits that carry an overall electric charge (like proteins or DNA). They can also behave in ways similar to colloidal suspensions, where large particles such as nanoparticles, dust, or aerosols are dispersed but not truly dissolved in another substance like a liquid or air. With these three simultaneous identities, the POMs can serve as a perfect model system for studying how these other substances behave in solution, which, prior to the discovery of this "missing link," were all independent fields, Liu says.

In the fields of nanoscience and nanotechnology, the POM giant molecules may offer another "dual-personality" benefit: They possess the advantages of single molecules, such as well-defined structures and uniform size and mass, as well as those of nanoparticles, such as complex and variable electronic, magnetic, and colloidal properties. This combination of properties, especially the molecules' monodispersed nature and adjustable chemical and physical properties, could help to develop more diverse nanomaterials than were previously thought possible.

This work builds on more than 200 years of curiosity about molybdenum solutions, which often have a distinctive blue color. Before anyone knew the element molybdenum at valence state +5 (MoV) was responsible for the blue color, Native Americans gave the name "Blue Waters" to certain fountains near today's Idaho Springs and the Valley of the Ten Thousand Smokes. Even after the secret of the color was revealed some 200 years ago, the detailed molecular structures of the solutes remained unclear. Then, in the last decade, a series of nanoscale, wheel-shaped, blue color, POM molecules were identified by a German group led by Achim Mόller, a co-author of the current paper. This progress introduced the more fascinating puzzle of how these giant molecules dissolve in water. The current study offers an explanation for the mechanism of vesicle formation, and opens a new avenue of exploration for scientists interested in what happens as inorganic molecules reach the nanometer scale.

###

This research was funded by the Division of Materials Science within the Department of Energy's Office of Science and direct funding from Brookhaven Lab (LDRD funding).

One of the ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization. Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more: http://www.bnl.gov/newsroom


Story Source:

The above story is based on materials provided by Brookhaven National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Brookhaven National Laboratory. "Unique Molecular Structure Offers Insight Into Nanoscale Self-assembly, Solution Chemistry." ScienceDaily. ScienceDaily, 6 November 2003. <www.sciencedaily.com/releases/2003/11/031106051538.htm>.
Brookhaven National Laboratory. (2003, November 6). Unique Molecular Structure Offers Insight Into Nanoscale Self-assembly, Solution Chemistry. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2003/11/031106051538.htm
Brookhaven National Laboratory. "Unique Molecular Structure Offers Insight Into Nanoscale Self-assembly, Solution Chemistry." ScienceDaily. www.sciencedaily.com/releases/2003/11/031106051538.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) — Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) — What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) — A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) — The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins