Featured Research

from universities, journals, and other organizations

University Of Texas At Austin Flywheel Spins To A Milestone Speed Record

Date:
November 14, 2003
Source:
University Of Texas At Austin
Summary:
Technology that significantly improves the ability of high-speed flywheels to store energy has been developed by research engineers at The University of Texas at Austin.

AUSTIN, Texas -- Technology that significantly improves the ability of high-speed flywheels to store energy has been developed by research engineers at The University of Texas at Austin.

Related Articles


A flywheel made with the new technology set a speed record, spinning at 3,000 miles per hour, demonstrating the capability of storing 70 percent more energy than the same-sized flywheel made with current technology.

“This is an important step toward the routine use of energy storage flywheels in space,” said Kevin Konno, the NASA program manager for the project.

An example of the need for energy storage in space is the solar-powered space station, which spends 30 minutes of every 90-minute orbit in the dark. That’s when the space station turns to battery power. High-speed flywheels are being developed to provide more reliable, efficient and longer lasting energy storage.

Research engineers in the Center for Electromechanics at The University of Texas at Austin designed, fabricated and tested the record-setting flywheel in a project funded by NASA. The work is being done in collaboration with a space flywheel program at NASA’s Glenn Research Center in Cleveland and Test Devices Inc., a private test company, based in Hudson, Mass.

Composite flywheels store energy by rapidly spinning a small wheel to ultra high speeds. The technical challenge is obvious to anyone who has spent time on a child’s merry-go-round—when you are in the center, it is easy to hold on. As you get farther from the center, it gets harder to hold on. At these high speeds, the material of the flywheel itself has trouble “holding on” and the flywheel grows as it spins. The researchers solved the problem of controlling how the structure grew to achieve very high speed without breaking.

“This achievement is the result of our ability to design state-of-the-art complex objects using carbon fiber composites that have unprecedented, but predictable, mechanical properties,” Richard Thompson, the research mechanical engineer who led the development team.

The record-setting flywheel his team developed included a novel, bell-shaped composite structure rotating on a metallic shaft in vacuum that well suits the design needs of NASA’s future space missions.

High-speed flywheels offer several advantages over low-speed flywheels and the chemical batteries now considered for space applications. High-speed flywheels store and release energy in a package that’s smaller and weighs less than other technologies, thus allowing more space on board for scientific payloads.

High-speed flywheels also last longer. Last year, researchers at The University of Texas at Austin charged and discharged a flywheel 110,000 times with no change in performance. In addition, a flywheel system can be operated so that it wastes less than 5-10 percent of the energy stored as it is charged and discharged. By comparison, chemical batteries can typically be charged and discharged a few tens of thousands of times at best and typically waste more than 20 percent of the energy on charging and discharging.

NASA’s flywheel achievements, while directed toward space applications, are also expected to benefit companies using flywheels to improve power delivery for factories, businesses and hybrid vehicles.

“Records like this should provide confidence to potential customers of the new companies, like Active Power Inc. of Austin, that are marketing high technology flywheels,” said Dr. Bob Hebner, director of the Center for Electromechanics, “The university sets records to show how far the technology can be advanced. Companies can use the results both to improve their products and to help show that commercial levels of performance are readily achievable with today’s technology.”


Story Source:

The above story is based on materials provided by University Of Texas At Austin. Note: Materials may be edited for content and length.


Cite This Page:

University Of Texas At Austin. "University Of Texas At Austin Flywheel Spins To A Milestone Speed Record." ScienceDaily. ScienceDaily, 14 November 2003. <www.sciencedaily.com/releases/2003/11/031114071848.htm>.
University Of Texas At Austin. (2003, November 14). University Of Texas At Austin Flywheel Spins To A Milestone Speed Record. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2003/11/031114071848.htm
University Of Texas At Austin. "University Of Texas At Austin Flywheel Spins To A Milestone Speed Record." ScienceDaily. www.sciencedaily.com/releases/2003/11/031114071848.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins