Featured Research

from universities, journals, and other organizations

New Playable 'Nanoguitar' Promises Circuit Applications

Date:
November 19, 2003
Source:
Cornell University
Summary:
Now, by "playing" a new, streamlined nanoguitar, Cornell physicists are demonstrating how such devices could substitute for electronic circuit components to make circuits smaller, cheaper and more energy-efficient.

ITHACA, N.Y. -- Six years ago Cornell University researchers built the world's smallest guitar -- about the size of a red blood cell -- to demonstrate the possibility of manufacturing tiny mechanical devices using techniques originally designed for building microelectronic circuits.

Related Articles


Now, by "playing" a new, streamlined nanoguitar, Cornell physicists are demonstrating how such devices could substitute for electronic circuit components to make circuits smaller, cheaper and more energy-efficient.

Lidija Sekaric, who built the new, playable nanoguitar while an Applied Physics graduate student at Cornell, described the project, along with other materials and device research in nanoelectromechanical systems (NEMS), at the 50th International Symposium and Exhibition of the American Vacuum Society, Nov. 2 to 7 in Baltimore,. At the same meeting Harold Craighead, professor of applied and engineering physics at Cornell, presented a plenary talk reviewing the uses of NEMS in biology. Sekaric worked in the Craighead Research Group at Cornell, part of the Cornell Center for Materials Research study of NEMS systems.

NEMS usually refers to devices about two orders of magnitude smaller than MEMS (microelectromechanical systems). Craighead prefers to define NEMS as devices in which the small size is essential for the job, such as those that respond to very small forces or biosensors so small that they can measure the mass of a single bacterium.

Sekaric, now a researcher at IBM's Watson Research Center in Yorktown Heights, N.Y., worked with Cornell graduate student Keith Aubin and undergraduate researcher Jingqing Huang on the new nanoguitar, which is about five times larger than the original, but still so small that its shape can only be seen in a microscope. Its strings are really silicon bars, 150 by 200 nanometers in cross-section and ranging from 6 to 12 micrometers in length (a micrometer is one-millionth of a meter; a nanometer is a billionth of a meter, the length of three silicon atoms in a row). The strings vibrate at frequencies 17 octaves higher than those of a real guitar, or about 130,000 times higher.

The researchers recently observed that light from a laser could cause properly designed small devices to oscillate, and this effect underlies the nanoguitar design. The nanoguitar is played by hitting the strings with a focused laser beam. When the strings vibrate they create interference patterns in the light reflected back, which can be detected and electronically converted down to audible notes. The device can play only simple tones, although chords can be played by activating more than one string at a time. The pitches of the strings are determined by their length, not by their tension as in a normal guitar, but the group has "tuned" the resonances in similar devices by applying a DC voltage.

"The generations of researchers to come can aim to play more complex pieces," says Sekaric. "This goal would indeed improve the science and technology of NEMS by aiming for integrated driving and detection schemes as well as a wide range of frequencies produced from a small set of vibrating elements."

Most of the devices the group studies don't resemble guitars, but the study of resonances often leads to musical analogies, and the natural designs of the small resonant systems often leads to shapes that look like harps, xylophones or drums. The guitar shape was, Craighead says, "an artistic expression by the engineering students." Sekaric notes that "a nanoguitar, as something close to almost everybody's understanding and experience, can also be used as a good educational tool about the field of nanotechnology, which indeed needs much public education and outreach."

The ability to make tiny things vibrate at very high frequencies offers many potential applications in electronics. From guitar strings on down, the frequency at which an object vibrates depends on its mass and dimensions. Nanoscale objects can be made to vibrate at radio frequencies (up to hundreds of megaHertz) and so can substitute for other components in electronic circuits. Cell phones and other wireless devices, for example, usually use the oscillations of a quartz crystal to generate the carrier wave on which they transmit or to tune in an incoming signal. A tiny vibrating nanorod might do the same job in vastly less space, while drawing only milliwatts of power.

Research by the Cornell NEMS group has shown that these oscillations can be tuned to a very narrow range of frequencies -- a property referred to in electronics as "high Q" -- which makes them useful as filters to separate signals of different frequencies. They also may be used to detect vibrations to help locate objects or detect faint sounds that could predict the failure of machinery or structures.

As the nanoguitar shows, NEMS can be used to modulate light, meaning they might be used in fiber-optic communications systems. Such systems currently require a laser at each end for two-way communication. Instead, Craighead suggests that a powerful laser at one end could send a beam that would be modulated and reflected back by a far less expensive NEMS device. This could make it more economical to run fiber-optic connections to private homes or to desktop computers in an office.

Current research at Cornell, Craighead says, still focuses on understanding what materials work best for making NEMS, how such small devices work and what they can do, gathering understanding that can be used in building future applications. .

The Craighead Group NEMS research also includes graduate students Rob Reichenbach and Scott Verberage, research associate Maxim Zalalutdinov and Physics Professror Jeevak Parpia. Aubin, Reichenbach and Zalalutdinov recently received the 2003 Collegiate Inventors Prize for an ultra-small oscillator.

Related Web sites: The following sites provide additional information on this news release.

The original nanoguitar story: http://www.news.cornell.edu/releases/July97/guitar.ltb.html

Craighead Research Group: http://www.hgc.cornell.edu/index.html


Story Source:

The above story is based on materials provided by Cornell University. Note: Materials may be edited for content and length.


Cite This Page:

Cornell University. "New Playable 'Nanoguitar' Promises Circuit Applications." ScienceDaily. ScienceDaily, 19 November 2003. <www.sciencedaily.com/releases/2003/11/031119080317.htm>.
Cornell University. (2003, November 19). New Playable 'Nanoguitar' Promises Circuit Applications. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2003/11/031119080317.htm
Cornell University. "New Playable 'Nanoguitar' Promises Circuit Applications." ScienceDaily. www.sciencedaily.com/releases/2003/11/031119080317.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins