Featured Research

from universities, journals, and other organizations

Using Biology To Create Electronics: DNA Used To Create Self-assembling Nano Transistor

Date:
November 21, 2003
Source:
American Society For Technion - Israel Institute Of Technology
Summary:
Scientists at the Technion–Israel Institute of Technology have harnessed the power of DNA to create a self-assembling nanoscale transistor, the building block of electronics. The research, published in the Nov. 21, 2003 issue of Science, is a crucial step in the development of nanoscale devices.

NEW YORK, N.Y., and HAIFA, Israel, November 17, 2003 - Scientists at the Technion–Israel Institute of Technology have harnessed the power of DNA to create a self-assembling nanoscale transistor, the building block of electronics. The research, published in the Nov. 21, 2003 issue of Science, is a crucial step in the development of nanoscale devices.

Erez Braun, lead scientist on the project and associate professor in the Faculty Physics at the Technion, says science has been intrigued with the idea of using biology to build electronic transistors that assemble without human manipulation. However, until now, demonstrating it in the lab has remained elusive. "This paper shows you can start with DNA proteins and molecular biology and construct an electronic device," he said.

"Erez Braun and his colleague Uri Sivan are some of the few pioneers in this field," said Horst Stormer, professor in Columbia University's Departments of Physics and Applied Physics and scientific director of the Nano Science and Engineering Centers. "This is outstanding research in the area that matters most in nano technology: self-assembly."

To get the transistors to self assemble, the Technion research team attached a carbon nanotube -- known for its extraordinary electronic properties -- onto a specific site on a DNA strand, and then made metal nanowires out of DNA molecules at each end of the nanotube. The device is a transistor that can be switched on and off by applying voltage to it.

The carbon nanotubes used in the experiment are only one nanometer, or a billionth of a meter, across. In computing technology, as scientists reach the limits of working with silicon, carbon nanotubes are widely recognized as the next step in squeezing an increasing number of transistors onto a chip, vastly increasing computer speed and memory. Braun emphasized that computers are only one application; these transistors may, for example, enable the creation of any number of devices in future applications, such as tiny sensors to perform diagnostic tests in healthcare.

Though transistors made from carbon nanotubes have already been built, those required labor-intensive fabrication. The goal is to have these nanocircuits self-assemble, enabling large-scale manufacturing of nanoscale electronics.

DNA, according to Braun, is a natural place to look for a tool to create these circuits. "But while DNA by itself is a very good self-assembling building block, it doesn't conduct electrical current," he noted.

To overcome these challenges, the researchers manipulated strands of DNA to add bacteria protein to a segment of the DNA. They then added certain protein molecules to the test tube, along with protein-coated carbon nanotubes. These proteins naturally bond together, causing the carbon nanotube to bind to the DNA strand at the bacteria protein.

Finally, they created tiny metal nanowires by coating DNA molecules with gold. In this step, the bacteria protein served another purpose: it prevented the metal from coating the bacteria-coated DNA segment, creating extending gold nanowires only at the ends of the DNA strand.

The goal, Braun explained, was to create a circuit. However, "at this point, the carbon nanotube is located on a segment of DNA, with metal nanowires at either end. Theoretically, one challenge here would be to encourage the nanotube to line up parallel to the DNA strand, meet the nanowires at either end, and thus make a circuit.

"There are some points where nature smiles upon you, and this was one of those points," Braun continued. "Carbon nanotubes are naturally rigid structures, and the protein coating makes the DNA strand rigid as well. The two rigid rods will align parallel to each other, thus making an ideal DNA-nanotube construct."

"In a nutshell, what this does is create a self-assembling carbon nanotube circuit," he concluded.

Scientists controlled the creation of transistors by regulating voltage to the substrate. Out of 45 nanoscale devices created in three batches, almost a third emerged as self-assembled transistors.

Braun added, however, that while this research demonstrates the feasibility of harnessing biology as a framework to construct electronics, creating working electronics from self-assembling carbon nanotube transistors is still in the future.

Braun conducted the research with colleagues Kinneret Keren, Rotem S. Berman, Evgeny Buchstab, and Uri Sivan.


Story Source:

The above story is based on materials provided by American Society For Technion - Israel Institute Of Technology. Note: Materials may be edited for content and length.


Cite This Page:

American Society For Technion - Israel Institute Of Technology. "Using Biology To Create Electronics: DNA Used To Create Self-assembling Nano Transistor." ScienceDaily. ScienceDaily, 21 November 2003. <www.sciencedaily.com/releases/2003/11/031121072232.htm>.
American Society For Technion - Israel Institute Of Technology. (2003, November 21). Using Biology To Create Electronics: DNA Used To Create Self-assembling Nano Transistor. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2003/11/031121072232.htm
American Society For Technion - Israel Institute Of Technology. "Using Biology To Create Electronics: DNA Used To Create Self-assembling Nano Transistor." ScienceDaily. www.sciencedaily.com/releases/2003/11/031121072232.htm (accessed April 23, 2014).

Share This



More Matter & Energy News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Is North Korea Planning Nuclear Test #4?

Is North Korea Planning Nuclear Test #4?

Newsy (Apr. 22, 2014) South Korean officials say North Korea is preparing to conduct another nuclear test, but is Pyongyang just bluffing this time? Video provided by Newsy
Powered by NewsLook.com
China Falls for 4x4s at Beijing Auto Show

China Falls for 4x4s at Beijing Auto Show

AFP (Apr. 22, 2014) The urban 4x4 is the latest must-have for Chinese drivers, whose conversion to the cult of the SUV is the talking point of this year's Beijing auto show. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Lytro Introduces 'Illum,' A Professional Light-Field Camera

Lytro Introduces 'Illum,' A Professional Light-Field Camera

Newsy (Apr. 22, 2014) The light-field photography engineers at Lytro unveiled their next innovation: a professional DSLR-like camera called "Illum." Video provided by Newsy
Powered by NewsLook.com
3 Reasons Why Harley Davidson Is Selling Tons of Epic Hogs

3 Reasons Why Harley Davidson Is Selling Tons of Epic Hogs

TheStreet (Apr. 22, 2014) Sales of motorcycles have continued to ride back from the depths of hell known as the Great Recession. Excluding scooters, sales of motorcycles increased 3% in 2013. In units, however, at 465,000 sold last year, the total remained about 50% below the peak hit in 2007. Industry leader Harley Davidson’s shareholders have benefited both by the industry recovery and positive headlines emanating from the company. Belus Capital Advisors CEO Brian Sozzi takes you beyond the headlines of the motorcycle maker. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins