Featured Research

from universities, journals, and other organizations

UT Southwestern Researchers' Discovery May Lead To Gene Targets For New Form Of Contraceptive

Date:
December 3, 2003
Source:
University Of Texas Southwestern Medical Center At Dallas
Summary:
Deleting a particular ion channel from sperm cells causes those cells to lose the power needed for fertilization, researchers at UT Southwestern Medical Center at Dallas found while expanding studies into male infertility.

DALLAS – Dec. 1, 2003 – Deleting a particular ion channel from sperm cells causes those cells to lose the power needed for fertilization, researchers at UT Southwestern Medical Center at Dallas found while expanding studies into male infertility.

These findings, which could eventually lead to more effective forms of contraception, are currently available online and will appear in the Dec. 9 issue of the Proceedings of the National Academy of Sciences.

In studies on mice, disrupting a gene that contains a putative calcium-permeable ion channel – identified in earlier research as CatSper2 – did not change normal sperm cell production or basic sperm motility, or movement. It did, however, prevent the appearance of a stimulated form of sperm motility, called hyperactivation, normally seen near the time of fertilization. Sperm cells were, thus, incapable of generating the power needed to penetrate an egg cell's extracellular matrix, or outer shell, which is necessary for fertilization.

"Basically this protein or ion channel plays a critical role in sperm cell hyperactivation, which is essential for fertilization," said Dr. Timothy Quill, first author of the study and an instructor of pharmacology and a researcher in the Cecil H. and Ida Green Center for Reproductive Biology Sciences. "The same protein exists in human sperm cells, so it is likely that disruption of CatSper2 would result in infertility in men as well. If a contraceptive drug could be designed that would bind to the protein and block its function, then those sperm cells would be rendered ineffective or infertile."

Such an ion channel-blocking contraceptive would likely be fast acting, Dr. Quill said. It also could have fewer side effects than other available contraceptives, as it would target a protein found only in sperm cells.

"Blocking the protein's activity would not cause defects in the development of the sperm cell, but only prevent hyperactivation," he said. "This discovery could serve as one of the next steps in the process of creating a new type of contraceptive that would offer less risk and perform faster."

UT Southwestern researchers recently identified more than 350 genes that appear to be active in maturing sperm cells in mice. In a study published in the PNAS earlier this fall, researchers showed that, so far, 17 of those genes are necessary for normal male fertility. Because these genes appear to be active only in developing sperm, creating contraceptive drugs targeting these genes also could be a possibility.

###

Dr. David Garbers, director of the Green Center, a Howard Hughes Medical Institute investigator and senior author of both PNAS studies, is well-known for his investigations into how the egg and sperm communicate, research that led to his election to the National Academy of Sciences.

Other contributors to the most recent study, all from UT Southwestern, include Dr. Robert Hammer, professor of biochemistry and in the Green Center; Lynda Doolittle, research specialist for HHMI, and Sarah Sugden, research assistant in the Green Center.

The study was supported in part by the Howard Hughes Medical Institute and the National Institutes of Health.


Story Source:

The above story is based on materials provided by University Of Texas Southwestern Medical Center At Dallas. Note: Materials may be edited for content and length.


Cite This Page:

University Of Texas Southwestern Medical Center At Dallas. "UT Southwestern Researchers' Discovery May Lead To Gene Targets For New Form Of Contraceptive." ScienceDaily. ScienceDaily, 3 December 2003. <www.sciencedaily.com/releases/2003/12/031202065425.htm>.
University Of Texas Southwestern Medical Center At Dallas. (2003, December 3). UT Southwestern Researchers' Discovery May Lead To Gene Targets For New Form Of Contraceptive. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2003/12/031202065425.htm
University Of Texas Southwestern Medical Center At Dallas. "UT Southwestern Researchers' Discovery May Lead To Gene Targets For New Form Of Contraceptive." ScienceDaily. www.sciencedaily.com/releases/2003/12/031202065425.htm (accessed April 16, 2014).

Share This



More Health & Medicine News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Outbreak Now Linked To 121 Deaths

Ebola Outbreak Now Linked To 121 Deaths

Newsy (Apr. 15, 2014) The ebola virus outbreak in West Africa is now linked to 121 deaths. Health officials fear the virus will continue to spread in urban areas. Video provided by Newsy
Powered by NewsLook.com
Cognitive Function: Is It All Downhill From Age 24?

Cognitive Function: Is It All Downhill From Age 24?

Newsy (Apr. 15, 2014) A new study out of Canada says cognitive motor performance begins deteriorating around age 24. Video provided by Newsy
Powered by NewsLook.com
How Mt. Everest Helped Scientists Research Diabetes

How Mt. Everest Helped Scientists Research Diabetes

Newsy (Apr. 15, 2014) British researchers were able to use Mount Everest's low altitudes to study insulin resistance. They hope to find ways to treat diabetes. Video provided by Newsy
Powered by NewsLook.com
Carpenter's Injury Leads To Hundreds Of 3-D-Printed Hands

Carpenter's Injury Leads To Hundreds Of 3-D-Printed Hands

Newsy (Apr. 14, 2014) Richard van As lost all fingers on his right hand in a woodworking accident. Now, he's used the incident to create a prosthetic to help hundreds. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins