Featured Research

from universities, journals, and other organizations

Researchers Develop Nanoscale Fibers That Are Thinner Than The Wavelengths Of Light They Carry

Date:
December 19, 2003
Source:
National Science Foundation
Summary:
Researchers have developed a process to create wires only 50 nanometers (billionths of a meter) thick. Made from silica, the same mineral found in quartz, the wires carry light in an unusual way.

Arlington, Va. -- Researchers have developed a process to create wires only 50 nanometers (billionths of a meter) thick. Made from silica, the same mineral found in quartz, the wires carry light in an unusual way. Because the wires are thinner than the wavelengths of light they transport, the material serves as a guide around which light waves flow. In addition, because the researchers can fabricate the wires with a uniform diameter and smooth surfaces down to the atomic level, the light waves remain coherent as they travel.

The smaller fibers will allow devices to transmit more information while using less space. The new material may have applications in ever-shrinking medical products and tiny photonics equipment such as nanoscale laser systems, tools for communications and sensors. Size is of critical importance to sensing--with more, smaller-diameter fibers packed into the same area, sensors could detect many toxins, for example, at once and with greater precision and accuracy.

Researchers at Harvard University led by Eric Mazur and Limin Tong (also of Zhejiang University in China), along with colleagues from Tohoku University in Japan, report their findings in the Dec. 18, 2003, issue of the journal Nature.

The National Science Foundation (NSF), a pioneer among federal agencies in fostering the development of nanoscale science, engineering and technology, supports Mazur's work. In FY 2004, NSF requested an expansion over earlier investments in critical fields including nanobiotechnology, manufacturing at the nanoscale, instrumentation and education. These efforts will enable development of revolutionary technologies that contribute to improvements in health, advance agriculture, conserve materials and energy and sustain the environment. The research will help to establish the infrastructure and workforce needed to exploit the opportunities presented by nanoscale science and engineering.

NSF comments regarding the research discovery and the Mazur group:

"Dr. Mazur's group at Harvard has made significant contributions to the fields of optics and short-pulse laser micromachining," says Julie Chen, program director in NSF's Nanomanufacturing program. "This new method of manufacturing subwavelength-diameter silica wires, in concert with the research group's ongoing efforts in micromachining, may lead to a further reduction of the size of optical and photonic devices."

"Dr. Mazur is involved in exciting, broader applications for short-pulse laser research, including microsurgery, such as laser eye surgery and dermatology, and studies of neurons in microscopic nematodes," says Julie Chen, program director in NSF's Nanomanufacturing program.

"Dr. Mazur is also extensively involved in education and outreach activities, with several high school and undergraduate students conducting research and many other middle school and high school students participating in laboratory visits," says Julie Chen, program director in NSF's Nanomanufacturing program.

"The multidisciplinary nature of the Mazur group's work offers an excellent training vehicle to move into other areas of research," says Denise Caldwell, one of the officers who monitors Mazur's awards. "One researcher I met at a Physics Frontiers center was able to successfully transition from plasma physics graduate research in Mazur's lab to a post-doctoral project on experimental neuroscience," she adds. Caldwell is a program director in NSF's Physics Frontiers program.

"He has been a national leader in developing techniques for using interactive teaching in large physics lecture courses and in developing tools to measure student learning in physics," says Duncan McBride, Program Director in NSF's Education and Human Resources Directorate. Dr. Mazur's work integrates research and education, and in 2001 he received the NSF Director's award for Distinguished Teaching Scholars.

Comment from Mazur regarding outreach:

"I have always been of the opinion that doing good science requires being a good educator," says Mazur. "What good is a scientific breakthrough if one cannot convince the public, let alone another scientist of its value?"


Story Source:

The above story is based on materials provided by National Science Foundation. Note: Materials may be edited for content and length.


Cite This Page:

National Science Foundation. "Researchers Develop Nanoscale Fibers That Are Thinner Than The Wavelengths Of Light They Carry." ScienceDaily. ScienceDaily, 19 December 2003. <www.sciencedaily.com/releases/2003/12/031218075113.htm>.
National Science Foundation. (2003, December 19). Researchers Develop Nanoscale Fibers That Are Thinner Than The Wavelengths Of Light They Carry. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2003/12/031218075113.htm
National Science Foundation. "Researchers Develop Nanoscale Fibers That Are Thinner Than The Wavelengths Of Light They Carry." ScienceDaily. www.sciencedaily.com/releases/2003/12/031218075113.htm (accessed April 16, 2014).

Share This



More Matter & Energy News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com
Ford Mustang Fetes Its 50th Atop Empire State Building

Ford Mustang Fetes Its 50th Atop Empire State Building

AFP (Apr. 16, 2014) Ford celebrated the 50th birthday of its beloved Mustang by displaying a new model of the convertible on top of the Empire State Building in New York. Duration: 00:28 Video provided by AFP
Powered by NewsLook.com
New York Auto Show Highlights Latest in Car Tech

New York Auto Show Highlights Latest in Car Tech

AP (Apr. 16, 2014) With more than 1 million visitors annually, the New York International Auto Show is one of the most important shows for the U.S. auto industry. This year's show featured the latest in high technology, and automotive bling. (April 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins