Featured Research

from universities, journals, and other organizations

Researchers Discover Materials Retain Useful Properties At Nanoscale

Date:
December 29, 2003
Source:
University Of Arkansas, Fayetteville
Summary:
One of the materials that powers modern technology like medical ultrasound and nationwide cell phones has been discovered to retain its properties when present in extraordinarily tiny amounts. This discovery implies that this and other materials with similar properties may be valuable at nanoscale in the production of small, smart communications devices, tiny diagnostic instruments and nano-robots.

FAYETTEVILLE, Ark. – One of the materials that powers modern technology like medical ultrasound and nationwide cell phones has been discovered to retain its properties when present in extraordinarily tiny amounts. This discovery implies that this and other materials with similar properties may be valuable at nanoscale in the production of small, smart communications devices, tiny diagnostic instruments and nano-robots.

These ferroelectric materials have a spontaneous dipole, or charge separation, that allows them to generate an electric current when their shape is changed--thus, mechanical energy becomes electricity. Until now, however, researchers had not determined whether these materials retain their properties at the nanoscale, where quantum physics plays a predominant role and different rules apply.

A group of University of Arkansas physicists has determined that the materials that allow these energy conversions indeed retain their properties at the nanoscale. Huaxiang Fu, assistant professor of physics, and Laurent Bellaiche, associate professor of physics, report their findings in an upcoming issue of Physical Review Letters.

Using computer modeling, Fu and Bellaiche looked at barium titanium oxide (BaTiO3), a typical ferroelectric material. While they found that BaTiO3 quantum dots would continue to have a dipole at the nanoscale, some differences do exist between the nanoscale material and its bulk counterpart. For instance, the researchers found that converting electricity to mechanical energy—for the specific case studied—is less efficient at the nanoscale than at the classical scale. They also found that, unlike in BaTiO3 bulk, dipoles do not naturally align in the same direction in the nanomaterial, but rather form a vortex pattern. They discovered that the dipoles do align if the researchers use a voltage that is strong enough. The voltage required to make the dipoles line up depends upon the length of the material.

These findings mark the first look at the properties of ferroelectric compounds at the nanoscale and will allow researchers to begin to further explore these properties.

"This is a new field. No one really knows the answers," Fu said.


Story Source:

The above story is based on materials provided by University Of Arkansas, Fayetteville. Note: Materials may be edited for content and length.


Cite This Page:

University Of Arkansas, Fayetteville. "Researchers Discover Materials Retain Useful Properties At Nanoscale." ScienceDaily. ScienceDaily, 29 December 2003. <www.sciencedaily.com/releases/2003/12/031223072459.htm>.
University Of Arkansas, Fayetteville. (2003, December 29). Researchers Discover Materials Retain Useful Properties At Nanoscale. ScienceDaily. Retrieved August 28, 2014 from www.sciencedaily.com/releases/2003/12/031223072459.htm
University Of Arkansas, Fayetteville. "Researchers Discover Materials Retain Useful Properties At Nanoscale." ScienceDaily. www.sciencedaily.com/releases/2003/12/031223072459.htm (accessed August 28, 2014).

Share This




More Matter & Energy News

Thursday, August 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins