Featured Research

from universities, journals, and other organizations

Researchers Discover Materials Retain Useful Properties At Nanoscale

Date:
December 29, 2003
Source:
University Of Arkansas, Fayetteville
Summary:
One of the materials that powers modern technology like medical ultrasound and nationwide cell phones has been discovered to retain its properties when present in extraordinarily tiny amounts. This discovery implies that this and other materials with similar properties may be valuable at nanoscale in the production of small, smart communications devices, tiny diagnostic instruments and nano-robots.

FAYETTEVILLE, Ark. – One of the materials that powers modern technology like medical ultrasound and nationwide cell phones has been discovered to retain its properties when present in extraordinarily tiny amounts. This discovery implies that this and other materials with similar properties may be valuable at nanoscale in the production of small, smart communications devices, tiny diagnostic instruments and nano-robots.

These ferroelectric materials have a spontaneous dipole, or charge separation, that allows them to generate an electric current when their shape is changed--thus, mechanical energy becomes electricity. Until now, however, researchers had not determined whether these materials retain their properties at the nanoscale, where quantum physics plays a predominant role and different rules apply.

A group of University of Arkansas physicists has determined that the materials that allow these energy conversions indeed retain their properties at the nanoscale. Huaxiang Fu, assistant professor of physics, and Laurent Bellaiche, associate professor of physics, report their findings in an upcoming issue of Physical Review Letters.

Using computer modeling, Fu and Bellaiche looked at barium titanium oxide (BaTiO3), a typical ferroelectric material. While they found that BaTiO3 quantum dots would continue to have a dipole at the nanoscale, some differences do exist between the nanoscale material and its bulk counterpart. For instance, the researchers found that converting electricity to mechanical energy—for the specific case studied—is less efficient at the nanoscale than at the classical scale. They also found that, unlike in BaTiO3 bulk, dipoles do not naturally align in the same direction in the nanomaterial, but rather form a vortex pattern. They discovered that the dipoles do align if the researchers use a voltage that is strong enough. The voltage required to make the dipoles line up depends upon the length of the material.

These findings mark the first look at the properties of ferroelectric compounds at the nanoscale and will allow researchers to begin to further explore these properties.

"This is a new field. No one really knows the answers," Fu said.


Story Source:

The above story is based on materials provided by University Of Arkansas, Fayetteville. Note: Materials may be edited for content and length.


Cite This Page:

University Of Arkansas, Fayetteville. "Researchers Discover Materials Retain Useful Properties At Nanoscale." ScienceDaily. ScienceDaily, 29 December 2003. <www.sciencedaily.com/releases/2003/12/031223072459.htm>.
University Of Arkansas, Fayetteville. (2003, December 29). Researchers Discover Materials Retain Useful Properties At Nanoscale. ScienceDaily. Retrieved September 15, 2014 from www.sciencedaily.com/releases/2003/12/031223072459.htm
University Of Arkansas, Fayetteville. "Researchers Discover Materials Retain Useful Properties At Nanoscale." ScienceDaily. www.sciencedaily.com/releases/2003/12/031223072459.htm (accessed September 15, 2014).

Share This



More Matter & Energy News

Monday, September 15, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Frustration As Drone Industry Outpaces Regulation In U.S.

Frustration As Drone Industry Outpaces Regulation In U.S.

Newsy (Sep. 14, 2014) U.S. firms worry they’re falling behind in the marketplace as the FAA considers how to regulate commercial drones. Video provided by Newsy
Powered by NewsLook.com
Smart Gun Innovators Fear Backlash From Gun Rights Advocates

Smart Gun Innovators Fear Backlash From Gun Rights Advocates

Newsy (Sep. 14, 2014) Winners of a contest for smart gun design are asking not to be named after others in the industry received threats for marketing similar products. Video provided by Newsy
Powered by NewsLook.com
Scientists Have Captured The Sound Of An Atom

Scientists Have Captured The Sound Of An Atom

Newsy (Sep. 12, 2014) Scientists have captured the sound of a single atom by measuring its vibrations. We can't hear it, but it's reportedly the faintest sound possible. Video provided by Newsy
Powered by NewsLook.com
Solar Flare Surges Off Sun

Solar Flare Surges Off Sun

Reuters - US Online Video (Sep. 11, 2014) NASA captures video of a significant flare surging off the sun. Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins