Featured Research

from universities, journals, and other organizations

Old Equation May Shed New Light On Planet Formation

Date:
January 6, 2004
Source:
University Of Arizona
Summary:
New work with an old equation may help scientists calculate the thickness of ice covering the oceans on Jupiter's moon Europa and ultimately provide insight into planet formation.

New work with an old equation may help scientists calculate the thickness of ice covering the oceans on Jupiter's moon Europa and ultimately provide insight into planet formation. Planetary bodies, such as the Earth and its moon, exert such gravitational force on one another that tides occur, not just in the oceans, but also in bodies of the planets themselves. The surfaces of planets actually rise and fall slightly as they orbit one another.

The standard for calculating how the gravity of one celestial body affects the shape of a second is an equation published in 1911 by A.E.H. Love. Sarah Frey, a doctoral candidate at the University of Arizona in Tucson, decided to see if she could figure out the thickness of ice on Europa by using Love's equation to calculate planetary tides.

"Love looked at two cases, which were very well behaved, very similar to Earth's values," she said.

However, Love didn't have the power of modern computers at his disposal.

Working with Terry Hurford, a graduate student in UA's department of planetary sciences and Richard Greenberg, a professor of planetary sciences at UA, Frey used computers to calculate what Love's equations predicted for various spheres that differed from one another in density, compressibility and rigidity. The spheres serve as proxies for planets.

To their surprise, the researchers found that in specific cases, the computer calculations suggested that the sphere would change shape dramatically. Frey said these special circumstances, called singularities, might ultimately reveal situations that would prevent the formation of planets.

Greenberg said, "If a rocky planet was a little bit bigger than Earth or Venus, it would be in the danger zone where the formula would predict a substantial distortion in the planet's shape. We're wondering if in some way this regulated the size of the planets."

Frey will discuss the team's findings about Love's equations, "Characterization of instabilities in the tidal deformation of a planetary body," on Wednesday, Jan. 7, at 10:30 a.m. at the Phoenix Civic Plaza at the joint annual meeting of the American Mathematical Association and Mathematical Association of America (MAA).


Story Source:

The above story is based on materials provided by University Of Arizona. Note: Materials may be edited for content and length.


Cite This Page:

University Of Arizona. "Old Equation May Shed New Light On Planet Formation." ScienceDaily. ScienceDaily, 6 January 2004. <www.sciencedaily.com/releases/2004/01/040106080737.htm>.
University Of Arizona. (2004, January 6). Old Equation May Shed New Light On Planet Formation. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2004/01/040106080737.htm
University Of Arizona. "Old Equation May Shed New Light On Planet Formation." ScienceDaily. www.sciencedaily.com/releases/2004/01/040106080737.htm (accessed July 25, 2014).

Share This




More Space & Time News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: ISS Cargo Ship Launches in Kazakhstan

Raw: ISS Cargo Ship Launches in Kazakhstan

AP (July 23, 2014) The Progress 56 cargo ship launched from the Baikonur Cosmodrome in Kazakhstan Wednesday. NASA says it will deliver cargo and crew supplies to the International Space Station. (July 23) Video provided by AP
Powered by NewsLook.com
Raw: Cargo Craft Undocks from Space Station

Raw: Cargo Craft Undocks from Space Station

AP (July 22, 2014) A Russian Soyuz cargo-carrying spacecraft undocked from the International Space Station on Monday. The craft is due to undergo about ten days of engineering tests before it burns up in the Earth's atmosphere. (July 22) Video provided by AP
Powered by NewsLook.com
NASA Ceremony Honors Moon Walker Neil Armstrong

NASA Ceremony Honors Moon Walker Neil Armstrong

AP (July 21, 2014) NASA honored one of its most famous astronauts Monday by renaming a historic building at the Kennedy Space Center in Florida. It now bears the name of Neil Armstrong, the first man to walk on the moon. (July 21) Video provided by AP
Powered by NewsLook.com
Neil Armstrong's Post-Apollo 11 Life

Neil Armstrong's Post-Apollo 11 Life

Newsy (July 19, 2014) Neil Armstrong gained international fame after becoming the first man to walk on the moon in 1969. But what was his life like after the historic trip? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins