Featured Research

from universities, journals, and other organizations

50-year-old Magnetic Mystery Solved; Quantum Structure Obeys Classical Physics

Date:
January 7, 2004
Source:
Ohio State University
Summary:
Ohio State University physicists and their colleagues have demonstrated for the first time a type of magnetic behavior that was predicted to exist more than 50 years ago.

This image depicts the molecular magnet called chromium-8 (Cr8). The structure contains eight electrically charged chromium atoms linked in a ring that measures less than one nanometer, or billionth of a meter, across. Using this very small magnet, an Ohio State University physicist and his colleagues have demonstrated for the first time a type of magnetic behavior that was predicted to exist more than 50 years ago. The finding could help bridge the gap between quantum and classical approaches for understanding these tiny structures, and aid the future development of useful devices based on nanotechnology, such as very powerful, very small computers. Image by Oliver Waldmann, courtesy of Ohio State University.

COLUMBUS, Ohio – Ohio State University physicists and their colleagues have demonstrated for the first time a type of magnetic behavior that was predicted to exist more than 50 years ago.

The behavior involves a special kind of energy transition among atoms in a very small magnet, called chromium-8 (Cr8). And while scientists have long thought that the effect was controlled purely by quantum mechanics, the magnet's behavior appears to reflect the laws of classical physics.

The classical laws of movement and energy are ones that people experience in daily life, and they normally only apply to objects that are large enough to be seen with the naked eye. In contrast, the molecular magnet Cr8 is so small that quantum mechanics -- the science that describes the interactions of subatomic particles -- should rule its behavior.

The finding could help bridge the gap between quantum and classical approaches for understanding these tiny structures, and aid the future development of useful devices based on nanotechnology, such as very powerful, very small computers.

"This shows that we can understand important aspects of quantum behavior with classical thinking," said Oliver Waldmann, a visiting scientist in the Department of Physics at Ohio State. "That's a twist that I like."

Waldmann and his colleagues published their results in a recent issue of the journal Physical Review Letters.

Materials such as Cr8 are called molecular magnets, because they are composed of only a small number of atoms that form a large molecule. The spins of the atoms' electrons provide the magnetism, and the molecule itself acts as separate magnet.

In the case of Cr8, the structure contains eight electrically charged chromium atoms linked in a ring that measures less than one nanometer, or billionth of a meter, across.

The spins of four of the chromium atoms are magnetized in one direction -- spin-up -- and the other four in the opposite direction -- spin-down.

The opposite spins cancel each other out, making Cr8 what's known as an antiferromagnet. Researchers call the up-and-down spin structure a Néel structure, after the late French physicist Louis Néel, who in 1970 won the Nobel Prize for his discovery of antiferromagnetism.

In 1952, Princeton University physicist and Nobelist Philip W. Anderson predicted that when the atoms in an antiferromagnet become slightly canted out of their straight spin-up and spin-down positions, their energy transitions take on a wavelike structure.

But Anderson's theory suggests that the magnet will generate a second kind of excitation called the Néel excitation when the electrons in its atoms are at their lowest possible energy state. This kind of Néel excitation has not been demonstrated, until now.

Waldmann performed the theoretical work that underpinned the experiment while he was at the University Erlangen-Nuremberg in Germany, and colleagues in Europe performed the experiment. Waldmann recently analyzed the data while working with Arthur J. Epstein, Distinguished University Professor of physics and chemistry at Ohio State.

To Epstein, the study demonstrates that magnets based on molecules with special internal molecular structures can produce new phenomena, such as Waldmann's observation of the Néel excitation.

He added that using molecular magnets gives scientists the opportunity to use synthetic chemistry to tune magnetic properties, and introduce previously unknown properties into magnets.

"This enables both new fundamental science and new potential technologies," Epstein said.

The scientists cooled a sample of Cr8 to only a few degrees Kelvin -- colder than minus 450 degrees F -- to lower the energy levels of electrons in the atoms as much as possible. Then they bombarded the material with neutrons to energize the electrons just enough for them to display Néel excitation.

The experiment was a tricky one, Waldmann said. Atoms sometimes absorb the neutrons, which would weaken signals from low-energy effects such as the Néel excitation.

The physicists chose Cr8 because the material would produce stronger signals, he said.

When Waldmann analyzed the spectrum of energy levels detected during the experiment, he saw that it matched the levels that were predicted by Anderson's theory half a century ago.

"The pieces just fell into place," Waldmann said. "Of course, I'd hoped for a long time that we would see the Néel excitation -- we started this project four years ago -- but when it actually happened, it was still a surprise."

The find is more surprising still, given that the Néel excitation is a quantum mechanical effect, and the physicists could explain its properties using a classical approach.

That idea could bode well for experts who believe that quantum mechanical effects can be exploited to create a new kind of electronics.

Normal electronics encode computer data based on a binary code of ones and zeros, depending on the presence or absence of an electron within a material such as silicon. But in principle, the direction of a spinning electron -- either "spin up" or "spin down" -- can be used as data, too. And other directions of spin in-between up and down could theoretically provide further information, so a single electron could store many different pieces of data.

Such quantum computers could be much smaller than traditional electronics, and much more powerful. Instead of silicon chips, they would be built from arrays of tiny molecular structures similar to Cr8.

But working devices based on this technology could be decades away, and Waldmann said his work is only a basic step in that direction.

"Our work shows that these excitations can be understood with very basic reasoning, and this surely will help us to understand other effects that can be observed in such materials," he said.

Co-authors on the Physical Review Letters paper include Tatiana Guidi of the Università Politecnica delle Marche in Italy; Stefano Carretta of the Università di Parma, also in Italy; Claudia Mondelli at the Institut Laue-Langevin in France; and Angela Dearden at the University of Manchester in the UK.


Story Source:

The above story is based on materials provided by Ohio State University. Note: Materials may be edited for content and length.


Cite This Page:

Ohio State University. "50-year-old Magnetic Mystery Solved; Quantum Structure Obeys Classical Physics." ScienceDaily. ScienceDaily, 7 January 2004. <www.sciencedaily.com/releases/2004/01/040107074033.htm>.
Ohio State University. (2004, January 7). 50-year-old Magnetic Mystery Solved; Quantum Structure Obeys Classical Physics. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2004/01/040107074033.htm
Ohio State University. "50-year-old Magnetic Mystery Solved; Quantum Structure Obeys Classical Physics." ScienceDaily. www.sciencedaily.com/releases/2004/01/040107074033.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) — Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) — Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) — A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) — A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins