Featured Research

from universities, journals, and other organizations

Researchers Identify The Pattern Of Gene-expression Changes For Tuberculosis In A Living Host

Date:
March 22, 2004
Source:
University Of Texas Southwestern Medical Center At Dallas
Summary:
Researchers at the Center for Biomedical Inventions at UT Southwestern Medical Center at Dallas have identified the genetic changes that Mycobacterium tuberculosis, the bacterium that causes tuberculosis, undergoes during infection of a living host.

DALLAS – March 22, 2004 – Researchers at the Center for Biomedical Inventions at UT Southwestern Medical Center at Dallas have identified the genetic changes that Mycobacterium tuberculosis, the bacterium that causes tuberculosis, undergoes during infection of a living host.

Related Articles


For the first time, researchers have adapted gene-chip technology to carry out genomic analysis of gene expression during the course of infection not only for M. tuberculosis, but for any pathogen. The findings will appear in an upcoming issue of the Proceedings of the National Academy of Sciences and are currently available online.

To analyze multiple questions about the pathogenesis of tuberculosis, the researchers used gene chips, which allowed them to assess the pattern in which bacterial genes are expressed during the course of infection. This work demanded two years of technology development to establish a protocol that allowed high-throughput analysis of genes that were expressed in a pathogen that was extracted from an infected animal, rather than simply grown in culture.

"This is an example of how the high-throughput system is a new avenue to study a variety of pathogens and how they affect living hosts," said Dr. Stephen Albert Johnston, director of the CBI and one of the senior authors of the study. "We see it as a tool for vaccine and drug development against disease and the threat of biological weapons."

In the PNAS paper, researchers discuss how the tuberculosis bacterium had previously undergone genetic analysis based only on lab tests outside of a living organism. Once the entire genome of M. tuberculosis was sequenced, Drs. Johnston and Adel Talaat, then a postdoctoral researcher at UT Southwestern, began using high-speed microarray techniques, or gene-chip technology, to analyze the bacterium's gene expression at different stages of infection in mice.

Since other pathogens have been sequenced, Dr. Johnston and coworkers are now genetically analyzing anthrax and plague infection in in vivo animal models, gaining more insight into how the potential bioweapons might behave in humans. The genetic analysis also could be applied to previously unknown diseases, like SARS.

"By identifying the genes that cause disease progression in vivo, we can begin to piece together the knowledge that will allow us to discover better targets for drug therapies," said Dr. Johnston.

To study tuberculosis – it annually kills about 2 million people around the world – researchers analyzed the bacterium's gene activity in healthy mice, in mice with compromised immune systems, and in lab cultures. They looked at which genes were active and at what stages of the infection, from the first day to several weeks after exposure.

They discovered that a specific set of tuberculosis genes was activated only in healthy mice 21 days after the initial infection, a critical time in the progression of the disease in humans and other animals. This indicates that these genes are activated to help the pathogen survive within the host.

"We found that some genes are turned down so they stay below the immune system's radar," said Dr. Johnston, professor of microbiology. "The bug (tuberculosis) acts in a stealthy way, hoping not to become a target of the host's immune system but needing to stay just active enough to continue surviving."

Some genes were expressed only if the pathogen was active in an animal model. Infection in lab cultures – previously the only way that tuberculosis has been studied at the genetic level – did not express the same genetic responses in the tuberculosis pathogen. The new findings indicate that infectious diseases need to be studied in live animals models if meaningful results are to be attained.

"Understanding bacterial gene expression in vivo is central to our understanding of how bacteria colonize, invade and interact with or disrupt the normal host-cell functions and eventually produce disease," the researchers write.

The study was funded by the National Institutes of Health and Defense Advanced Research Projects Agency. This work was carried out in collaboration with the Animal Model Development Center at the University of New Mexico Health Science Center.


Story Source:

The above story is based on materials provided by University Of Texas Southwestern Medical Center At Dallas. Note: Materials may be edited for content and length.


Cite This Page:

University Of Texas Southwestern Medical Center At Dallas. "Researchers Identify The Pattern Of Gene-expression Changes For Tuberculosis In A Living Host." ScienceDaily. ScienceDaily, 22 March 2004. <www.sciencedaily.com/releases/2004/03/040322075930.htm>.
University Of Texas Southwestern Medical Center At Dallas. (2004, March 22). Researchers Identify The Pattern Of Gene-expression Changes For Tuberculosis In A Living Host. ScienceDaily. Retrieved March 31, 2015 from www.sciencedaily.com/releases/2004/03/040322075930.htm
University Of Texas Southwestern Medical Center At Dallas. "Researchers Identify The Pattern Of Gene-expression Changes For Tuberculosis In A Living Host." ScienceDaily. www.sciencedaily.com/releases/2004/03/040322075930.htm (accessed March 31, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Tuesday, March 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Solitair Device Aims to Takes Guesswork out of Sun Safety

Solitair Device Aims to Takes Guesswork out of Sun Safety

Reuters - Innovations Video Online (Mar. 31, 2015) — The Solitair device aims to take the confusion out of how much sunlight we should expose our skin to. Small enough to be worn as a tie or hair clip, it monitors the user&apos;s sun exposure by taking into account their skin pigment, location and schedule. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Soda, Salt and Sugar: The Next Generation of Taxes

Soda, Salt and Sugar: The Next Generation of Taxes

Washington Post (Mar. 30, 2015) — Denisa Livingston, a health advocate for the Dinι Community Advocacy Alliance, and the Post&apos;s Abby Phillip discuss efforts around the country to make unhealthy food choices hurt your wallet as much as your waistline. Video provided by Washington Post
Powered by NewsLook.com
UnitedHealth Buys Catamaran

UnitedHealth Buys Catamaran

Reuters - Business Video Online (Mar. 30, 2015) — The $12.8 billion merger will combine the U.S.&apos; third and fourth largest pharmacy benefit managers. Analysts say smaller PBMs could also merge. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins