Featured Research

from universities, journals, and other organizations

Brain Signal Predicts Working Memory Prowess

Date:
April 22, 2004
Source:
NIH/National Institute Of Mental Health
Summary:
Some people are better than others at remembering what they have just seen — holding mental pictures in mind from moment to moment. An individual’s capacity for such visual working memory can be predicted by his or her brainwaves.

Subjects’ memory capacity (diamonds) correlated with the increase in amplitude of a particular brain signal as the number of items to be held in working memory increased from 2 to 4. The amplitude increase leveled off earlier in subjects with lower capacity. (Source: Edward Vogel, Ph.D., University of Oregon, Department of Psychology)

Some people are better than others at remembering what they have just seen — holding mental pictures in mind from moment to moment. An individual’s capacity for such visual working memory can be predicted by his or her brainwaves, researchers funded by the NIH’s National Institute of Mental Health have discovered.

A key brain electrical signal leveled off when the number of objects held in mind exceeded a subject’s capacity to accurately remember them, while it continued to soar in those with higher capacity, report University of Oregon psychologist Edward Vogel, Ph.D., and graduate student Maro Machizawa, in the April 15, 2004, Nature.

Analogous to a computer’s RAM, working memory is the ever-changing content of our consciousness. It’s been known for years that people have a limited capacity to hold things in mind that they’ve just seen, varying from 1.5 to 5 objects. “Our study identifies signals from brain areas that hold these visual representations and allows us to coarsely decode them, revealing how many objects are being held and their location in the visual field,” explained Vogel.

To find out if the amplitude of detectable signals reflects the number of object representions held in visual memory, the researchers presented 36 subjects with a series of trials containing an increasing number of objects. Subjects briefly viewed a picture containing colored squares, followed by a one-second delay, and then a test picture. They pressed buttons to indicate whether the test picture was identical to — or differed by one color — from the one seen earlier. The more squares a subject could correctly identify having just seen, the greater his/her visual working memory capacity. Subjects averaged 2.8 squares.

Electrodes on the scalp recorded neural activity during the one-second delay to pinpoint signals reflecting activity of brain areas involved in holding the images in working memory. Asking subjects to remember just one of two sets of colored squares that appeared on the left and right sides of the screen revealed signals near the opposite rear side of the head as emanating from the brain area involved.

The researchers found that the more squares a subject correctly identified, the higher the spike of corresponding brain activity — up to a point. Amplitude of the signal for correct trials was much higher than incorrect ones, suggesting that the delay activity specifically reflects the maintenance of successful representations in visual memory. Neural activity of subjects with poorer working memory scores leveled off early, showing little or no increase when the number of squares to remember increased from 2 to 4, while those with high capacity, who correctly remembered more squares, showed large increases.

Using a similar task with functional magnetic resonance imaging (fMRI), a research team at Vanderbilt University reports in the same issue of Nature that the posterior parietal cortex, an area at the top rear part of the brain, is the brain area responsible for holding representations in visual working memory — and likely source of the signal in the Oregon study.

"Simply by measuring the amplitude increase across memory array sizes, we can accurately predict an individual's memory capacity,” said Vogel.

Since working memory capacity is strongly predictive of performance on a broad array of of cognitive abilities — reasoning, language, flexible problem solving — Vogel foresees the physiological measure as finding applications in assessing individuals who are behaviorally or verbally impaired, such as in cases of stroke or paralysis. The technique has also been used to study development of cognitive abilities in pre-verbal children.

NIMH is part of the National Institutes of Health (NIH), the Federal Government's primary agency for biomedical and behavioral research. NIH is a component of the U.S. Department of Health and Human Services.


Story Source:

The above story is based on materials provided by NIH/National Institute Of Mental Health. Note: Materials may be edited for content and length.


Cite This Page:

NIH/National Institute Of Mental Health. "Brain Signal Predicts Working Memory Prowess." ScienceDaily. ScienceDaily, 22 April 2004. <www.sciencedaily.com/releases/2004/04/040420012800.htm>.
NIH/National Institute Of Mental Health. (2004, April 22). Brain Signal Predicts Working Memory Prowess. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2004/04/040420012800.htm
NIH/National Institute Of Mental Health. "Brain Signal Predicts Working Memory Prowess." ScienceDaily. www.sciencedaily.com/releases/2004/04/040420012800.htm (accessed September 2, 2014).

Share This




More Mind & Brain News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
Coffee Then Napping: The (New) Key To Alertness

Coffee Then Napping: The (New) Key To Alertness

Newsy (Aug. 30, 2014) Researchers say having a cup of coffee then taking a nap is more effective than a nap or coffee alone. Video provided by Newsy
Powered by NewsLook.com
Young Entrepreneurs Get $100,000, If They Quit School

Young Entrepreneurs Get $100,000, If They Quit School

AFP (Aug. 29, 2014) Twenty college-age students are getting 100,000 dollars from a Silicon Valley leader and a chance to live in San Francisco in order to work on the start-up project of their dreams, but they have to quit school first. Duration: 02:20 Video provided by AFP
Powered by NewsLook.com
Baby Babbling Might Lead To Faster Language Development

Baby Babbling Might Lead To Faster Language Development

Newsy (Aug. 29, 2014) A new study suggests babies develop language skills more quickly if their parents imitate the babies' sounds and expressions and talk to them often. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins