Featured Research

from universities, journals, and other organizations

High-speed Nanotube Transistors Could Lead To Better Cell Phones, Faster Computers

Date:
April 28, 2004
Source:
American Chemical Society
Summary:
Scientists have demonstrated, for the first time, that transistors made from single-walled carbon nanotubes can operate at extremely fast microwave frequencies, opening up the potential for better cell phones and much faster computers, perhaps as much as 1,000 times faster.

Scientists have demonstrated, for the first time, that transistors made from single-walled carbon nanotubes can operate at extremely fast microwave frequencies, opening up the potential for better cell phones and much faster computers, perhaps as much as 1,000 times faster.

Related Articles


The findings, reported in the April issue of Nano Letters, a peer-reviewed journal of the American Chemical Society, the world's largest scientific society, add to mounting enthusiasm about nanotechnology's revolutionary potential.

"Since the invention of nanotube transistors, there have been theoretical predictions that they can operate very fast," says Peter Burke, Ph.D., a professor of electrical engineering and computer science at the University of California, Irvine, and lead author of the paper. "Our work is the first to show that single-walled nanotube transistor devices can indeed function at very high speeds."

Burke and his colleagues built an electrical circuit with a carbon nanotube between two gold electrodes. When they varied the voltage, the circuit operated at a frequency of 2.6 gigahertz (GHz), which means electrical current could be switched on and off in about one billionth of a second. This is the first demonstration of a nanotube operating in the frequency range of microwaves — electromagnetic waves with faster frequencies than radio waves.

Although Burke's group demonstrated that nanotube transistors could work in the GHz range, he believes that much faster speeds are possible. "I estimate that the theoretical speed limit for these nanotube transistors should be terahertz [1 THz=1,000 GHz], which is about 1,000 times faster than modern computer speeds." His team is currently doing related research on the theoretical prediction of the cutoff frequency, or so-called speed limit, for these transistors.

Every transistor has a cutoff frequency, which is the maximum speed at which it can operate. For silicon, the cutoff is about 100 GHz, but current circuits typically operate at much slower speeds, according to Burke. For example, some of today's newest processor chips still operate below 5 GHz.

Nanotechnology is the science of the very small: a nanometer is one billionth of a meter, or about 1,000 times smaller than the width of a human hair. A nanotube is another form of carbon, like graphite or diamond, where the atoms are arranged like a rolled-up tube of chicken wire.

Electrons move without losing energy inside nanotubes, which makes them perfect candidates for connections in electrical devices. A semiconducting carbon nanotube can act as a transistor — the key component in all modern electronics — because it can be switched on and off.

High-speed nanotube transistors could be useful in a number of applications. "Theoretically, this can translate into very low noise microwave amplifiers that could increase the range in which cell phones operate," Burke says. A cell phone receives its radio signal at a very low strength, so a microwave amplifier is needed to boost the signal for further processing.

Nanotube transistors could also lead to very high quality microwave filters that can separate out many different phone conversations more efficiently than current filters, and at lower cost, according to Burke. "Right now, this one function requires a separate chip inside a cell phone," he says. If the filter could be integrated with the other processing parts, the entire radio system would be on one chip, saving power, space and cost.

This type of "integrated nanosystem" is a goal of Burke's research. "Ultimately, we would like more sophisticated circuits on a single chip," he says. "Our nanotube transistor is on a silicon substrate, but there are no active silicon devices." If all the transistors and electrical connections on a chip were made of nanotubes or nanowires, there would be no silicon parts to slow things down.

Burke expects to have a prototype transistor available within two years. "We still need to demonstrate operation at room temperature, which we are working on in my lab now. Also, we need to show that we can achieve amplification," he says. "But these are both achievable goals given one or two years of work."

The Army Research Office, the Office of Naval Research, and the Defense Advanced Research Projects Agency provided funding for this research.


Story Source:

The above story is based on materials provided by American Chemical Society. Note: Materials may be edited for content and length.


Cite This Page:

American Chemical Society. "High-speed Nanotube Transistors Could Lead To Better Cell Phones, Faster Computers." ScienceDaily. ScienceDaily, 28 April 2004. <www.sciencedaily.com/releases/2004/04/040428060927.htm>.
American Chemical Society. (2004, April 28). High-speed Nanotube Transistors Could Lead To Better Cell Phones, Faster Computers. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2004/04/040428060927.htm
American Chemical Society. "High-speed Nanotube Transistors Could Lead To Better Cell Phones, Faster Computers." ScienceDaily. www.sciencedaily.com/releases/2004/04/040428060927.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins