Featured Research

from universities, journals, and other organizations

UCSD Chemists Bring Use Of Designer Molecules To Treat Common Diseases Closer To Reality

Date:
June 23, 2004
Source:
University Of California, San Diego
Summary:
By making use of model compounds in drug design, chemists at the University of California, San Diego identified a class of molecules that could lead to treatments for a wide range of diseases, including cancer, arthritis, and heart disease.

By making use of model compounds in drug design, chemists at the University of California, San Diego identified a class of molecules that could lead to treatments for a wide range of diseases, including cancer, arthritis, and heart disease.

Enzymes—protein catalysts—in the body that help break down connective tissue like collagen are important in growth and wound healing, but also play a role in many diseases. For example, these enzymes are overactive in arthritis and are used by cancer cells to migrate through connective tissue and spread. While a number of drugs have been designed to inhibit these enzymes, only one has made it through clinical trials because of a variety of drawbacks.

In a study to be published in the July 14 issue of the Journal of the American Chemical Society, a group of chemists led by Seth Cohen in UCSD’s Division of Physical Sciences has identified a promising set of inhibitors that may lack the drawbacks plaguing the previous generation of such compounds.

“Nearly all the compounds known to inhibit these enzymes are chemically similar,” says Cohen, an assistant professor of chemistry and biochemistry. “But they tend to be toxic, cannot be taken orally, and are rapidly metabolized. We tested 11 new compounds selected for their chemical similarities and some differences to the known inhibitors. Many of the new compounds not only turned out to be excellent inhibitors, they are also less likely to have undesirable side effects. For example, one of the inhibitors we discovered is actually the food additive Maltol, which is used as a flavor enhancer.”

All enzymes have an active site—a pocket with a particular shape and chemical composition, where molecules bind and react. Enzymes that break down connective tissue—matrix metalloproteases or MMPs—have a zinc ion at the active site, which is essential for providing the right chemical environment for a reaction to occur. Compounds that surround and bind to the zinc ion can inhibit the enzyme.

In the classical approach to drug design, chemists use computer programs to predict what compounds are potential inhibitors of an enzyme. This “computational” approach requires knowledge of the chemical groups at the active site of the enzyme and the three-dimensional shape of the active site. But it can be difficult to obtain and crystallize sufficient quantities of the enzyme to use X-ray crystallography—the method chemists employ to take detailed pictures of molecules using X-rays.

“The drug design process is much more challenging for proteins containing metal ions because computational chemistry is not as advanced for this,” says Cohen. “It’s a frontier area of research. But you can overcome the limitations of computational chemistry by using the model compounds to understand how the drug binds to just the metal part. Basically you take out the difficult part by using models.”

Cohen and his colleagues tested the ability of the 11 compounds to inhibit an MMP enzyme in a test tube. They also studied the strength of binding of each of the 11 compounds to a chemical model that they had designed to mimic the way the zinc is bound in the active site of the enzyme. The researchers found that the ability of the compounds to inhibit the enzyme increased as the strength of their binding to the model increased. This is what is expected if the inhibitor is working by binding to the active site of the enzyme, rather than some unknown mechanism.

There are actually 26 MMPs in the human body, so to avoid unwanted side effects, drugs need to be designed that target specific MMPs. Since the active site for each of these MMPs contains a zinc ion, the 11 inhibitors would not target just one MMP. Designing inhibitors that target a single type of MMP requires modifying the way the inhibitor binds to chemical groups of the enzyme unique to that enzyme. Modifying the inhibitors to make them target specific enzymes will be the researchers’ next steps, but according to Cohen, there is a great deal of published work that will help them with this task. Computational chemistry can also help them now that they have figured out the tricky metal-binding part.

“Although the use of models in chemistry is very well established, we are among the first groups to aggressively use model chemistry as a part of drug design,” says Cohen. “So far, our work has been particularly well received in the community of MMP research.”

The other researchers that contributed to this work are David Puerta and Jana Lewis, graduate students in the Cohen lab. The study was supported by UCSD, a Chris and Warren Hellman Faculty Scholar award, and the American Heart Association.


Story Source:

The above story is based on materials provided by University Of California, San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University Of California, San Diego. "UCSD Chemists Bring Use Of Designer Molecules To Treat Common Diseases Closer To Reality." ScienceDaily. ScienceDaily, 23 June 2004. <www.sciencedaily.com/releases/2004/06/040622014544.htm>.
University Of California, San Diego. (2004, June 23). UCSD Chemists Bring Use Of Designer Molecules To Treat Common Diseases Closer To Reality. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2004/06/040622014544.htm
University Of California, San Diego. "UCSD Chemists Bring Use Of Designer Molecules To Treat Common Diseases Closer To Reality." ScienceDaily. www.sciencedaily.com/releases/2004/06/040622014544.htm (accessed July 24, 2014).

Share This




More Matter & Energy News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com
Boeing Ups Outlook on 52% Profit Jump

Boeing Ups Outlook on 52% Profit Jump

Reuters - Business Video Online (July 23, 2014) Commercial aircraft deliveries rose seven percent at Boeing, prompting the aerospace company to boost full-year profit guidance- though quarterly revenues missed analyst estimates. Bobbi Rebell reports. Video provided by Reuters
Powered by NewsLook.com
Europe's Car Market on the Rebound?

Europe's Car Market on the Rebound?

Reuters - Business Video Online (July 23, 2014) Daimler kicks off a round of second-quarter earnings results from Europe's top carmakers with a healthy set of numbers - prompting hopes that stronger sales in Europe will counter weakness in emerging markets. Hayley Platt reports. Video provided by Reuters
Powered by NewsLook.com
9/11 Commission Members Warn of Terror "fatigue" Among American Public

9/11 Commission Members Warn of Terror "fatigue" Among American Public

Reuters - US Online Video (July 22, 2014) Ten years after releasing its initial report, members of the 9/11 Commission warn of the "waning sense of urgency" in combating terrorists attacks. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins