Featured Research

from universities, journals, and other organizations

A Fly's Taste Experience Is Much Like Ours

June 29, 2004
University Of California, Berkeley
When a fly drops in to sample your picnic lunch, it's basically tasting the same thing you taste, according to a new study by University of California, Berkeley, scientists.

A fly reflexively extends its proboscis to eat when its leg is dipped in sugar, a response triggered by a sugar receptor on the end of taste bristles that dot the leg.
Credit: Image courtesy Kristin Scott/UC Berkeley

BERKELEY – When a fly drops in to sample your picnic lunch, it's basically tasting the same thing you taste, according to a new study by University of California, Berkeley, scientists.

Related Articles

In the first detailed genetic study of fly taste receptors, UC Berkeley neuroscientist Kristin Scott and her colleagues showed that fruit flies have receptors devoted to sweet and bitter tastes just like humans. While human taste receptors are limited to the tongue, the receptors in flies are mounted on bristles scattered all over the body, including the legs, the wings, the food-sucking proboscis and the egg-laying ovipositor.

"Taste neurons basically tell the fly whether food is good or bad to eat," said Scott, an assistant professor of molecular and cell biology at UC Berkeley. "It's pretty amazing that after hundreds of millions of years of evolution, flies and humans still use the same logic for taste detection."

Tracing the taste receptor nerve cells into the brain, Scott and her team showed that fly brains contain a map both of the location on the body and the type or quality of the taste.

Though no one has mapped the taste areas inside mammal or human brains, other senses typically are mapped in the brain by location or quality, but not both. Odors, for example, are perceived by the brain according to what, not where, they are. Touch, on the other hand, is mapped to the brain according to its location on the skin.

"We think there are body maps as well as quality maps in the fly brain because flies need to know where the food is located in order to react properly," Scott said. "If a fly tastes sugar with its leg, it automatically extends its proboscis and eats. If it detects sugar with its proboscis, it just eats."

Scott noted that flies, like mammals, probably also have sour and salt taste receptors, but these have yet to be characterized in any animal. Mammals have a fifth taste receptor, umami, which means "savory" in Japanese and corresponds to the glutamate receptor, as in monosodium glutamate, or MSG.

She and postdoctoral fellow Zuoren Wang, graduate student Aakanksha Singhvi and laboratory manager Priscilla Kong - all with UC Berkeley's Helen Wills Neuroscience Institute and the Department of Molecular and Cell Biology - reported their findings in the June 24 issue of the journal Cell.

Scott said that the taste system of flies is much simpler than the smell or olfactory sensory system. The latter uses 50 different odor detectors to discriminate among thousands of smells, while the 68 taste receptors are reduced to only a few different taste categories in the fly brain. Taste is geared mainly to locating food and deciding whether or not to eat it, without any fine taste distinctions, she said.

This also is true of mammals, whose taste receptors send the brain only the basic taste notes of food. Odor receptors provide the fine discrimination of smells that allows us to distinguish foods and enjoy eating.

"The simplicity of the gustatory map of the fruitfly indicates that it will be a model system to examine how the brain translates chemical cues in the periphery into taste perception and behavior," the authors concluded in their Cell paper.

In the past few years, Scott and her colleagues have been working their way through the 68 genes in the fruitfly, Drosophila melanogaster, that code for taste or gustatory receptors. The seven they've studied so far fall into two distinct groups. Five always occur on a taste neuron with a sixth receptor, called Gr66a, while the seventh (Gr5a) occurs by itself, with no overlap between the two groups.

This scenario matches that found in mammals, where there are 35 receptors that respond to bitter substances and three that respond to sweet, with members of the two sets never expressed on the same nerve cell.

To determine whether the two sets of taste receptors correspond to sweet and to bitter foods, Scott and her team killed individual taste neurons by inserting genes that produced diphtheria toxin.

Each taste bristle hosts two to four taste neurons and one neuron that detects movement (a mechanosensory neuron). Typically, one of the taste neurons expresses receptors from the set of six, while another neuron expresses the lone receptor from the second set. The remaining neurons remain a mystery - they may be specific to salt or sour.

Once the researchers had killed a taste neuron, they tested whether the altered flies could taste bitter or sweet. The typical test involved the proboscis extension reflex - if you stick a fly's foot in sugar water, its proboscis will extend. Using trehalose (diglucose), glucose or sucrose as the sugar and caffeine, quinine, berberine (a medicinal alkaloid) or denatonium - a super-bitter compound used to make toxic chemicals unpalatable - as the bitter, the researchers confirmed that the sets of receptors did indeed respond to sweet and bitter just like the taste receptors of mammals. The largest set responded to bitter compounds because there are a greater variety of bitter compounds in nature.

They then put genes for green fluorescent protein into neurons to trace them back to where they first enter the brain. They found that neurons in the mouthparts, that is, inside the proboscis, sent their information to the front part of the brain's subesophageal ganglion, neurons from the proboscis sent their information to the middle of that region, and neurons from the legs went to the back of the ganglion.

Similarly, bitter notes played out in one area of the brain, while sweet notes lit up a separate area.

As Scott continues her genetic studies of the remainder of the 68 gustatory neurons, she and her lab colleagues also are sticking electrodes in the neurons to see how they respond to sugar and bitter tastes, and how these signals integrate in the brain to affect the behavior of the fly.

The research is supported by a grant from the National Institutes of Health.

Story Source:

The above story is based on materials provided by University Of California, Berkeley. Note: Materials may be edited for content and length.

Cite This Page:

University Of California, Berkeley. "A Fly's Taste Experience Is Much Like Ours." ScienceDaily. ScienceDaily, 29 June 2004. <www.sciencedaily.com/releases/2004/06/040629015704.htm>.
University Of California, Berkeley. (2004, June 29). A Fly's Taste Experience Is Much Like Ours. ScienceDaily. Retrieved April 19, 2015 from www.sciencedaily.com/releases/2004/06/040629015704.htm
University Of California, Berkeley. "A Fly's Taste Experience Is Much Like Ours." ScienceDaily. www.sciencedaily.com/releases/2004/06/040629015704.htm (accessed April 19, 2015).

Share This

More From ScienceDaily

More Mind & Brain News

Sunday, April 19, 2015

Featured Research

from universities, journals, and other organizations

Featured Videos

from AP, Reuters, AFP, and other news services

Our Love Of Puppy Dog Eyes Explained By Science

Our Love Of Puppy Dog Eyes Explained By Science

Newsy (Apr. 17, 2015) Researchers found a spike in oxytocin occurs in both humans and dogs when they gaze into each other&apos;s eyes. Video provided by Newsy
Powered by NewsLook.com
Scientists Find Link Between Gestational Diabetes And Autism

Scientists Find Link Between Gestational Diabetes And Autism

Newsy (Apr. 17, 2015) Researchers who analyzed data from over 300,000 kids and their mothers say they&apos;ve found a link between gestational diabetes and autism. Video provided by Newsy
Powered by NewsLook.com
Video Messages Help Reassure Dementia Patients

Video Messages Help Reassure Dementia Patients

AP (Apr. 17, 2015) Family members are prerecording messages as part of a unique pilot program at the Hebrew Home in New York. The videos are trying to help victims of Alzheimer&apos;s disease and other forms of dementia break through the morning fog of forgetfulness. (April 17) Video provided by AP
Powered by NewsLook.com
Common Pain Reliever Might Dull Your Emotions

Common Pain Reliever Might Dull Your Emotions

Newsy (Apr. 16, 2015) Each week, millions of Americans take acetaminophen to dull minor aches and pains. Now researchers say it might blunt life&apos;s highs and lows, too. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.


Breaking News:

Strange & Offbeat Stories

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News


Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile

Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins