Featured Research

from universities, journals, and other organizations

Researchers Show How To Assemble Building Blocks For Nanotechnology

Date:
August 24, 2004
Source:
University Of Michigan
Summary:
University of Michigan researchers have discovered a way to self-assemble nanoparticles into wires, sheets, shells and other unusual structures using sticky patches that make the particles group themselves together in programmed ways. This method could be used to fabricate new materials and devices for nanotechnology.

Images of simulations of patchy particles self-assembling.
Credit: Courtesy of University Of Michigan

ANN ARBOR, Mich. -- University of Michigan researchers have discovered a way to self-assemble nanoparticles into wires, sheets, shells and other unusual structures using sticky patches that make the particles group themselves together in programmed ways. This method could be used to fabricate new materials and devices for nanotechnology.

Related Articles


Using computer simulation of model particles, Zhenli Zhang, U-M research fellow in chemical engineering, and Sharon Glotzer, U-M associate professor in chemical engineering, studied the self-assembly of particles with sticky molecular "patches" on their surfaces---discrete interaction sites that cause particles to stick together at just the right places to make the grouping organized. The paper, "Self Assembly of Patchy Particles," appeared in Nano Letters this month.

The results of the simulations showed that if surfaces of particles could be patterned with patches of molecules, they could make the particles assemble into different shapes. The trick, according to the researchers, is using patches that are strongly directional and attract and repel specific parts of other particles, much like proteins do.

This finding is important because the biggest impediment to developing nanotechnology is figuring out how to build the tiny structures, which are only as big as the smallest viruses. Because they are so small, nanodevices will not be built by the traditional means of using workers in factories or assembly lines. Rather, scientists must develop ways to make the devices assemble by themselves in precise ways for specific applications.

This type of self-assembly happens constantly in nature, but engineering it in the lab, so that eventually scientists can predict their shapes and use the shapes for specific applications, is another matter.

According to the paper, many of the structures they were able to predict with the model will prove useful in device fabrication. For example, sheets of spheres with tunable structures (an ordered arrangement of points that can be changed) may serve as novel materials with optical and mechanical properties.

The chains, rings and twisted and staircase assemblies could serve as basic structural units to further prepare materials with more complex structures such as tubes, helices and 3-D networks that could in turn, serve as scaffolds or templates for assembly of electronic or optical components, or as channels for transport of liquids or molecules.

###

For more information about Glotzer's group, visit http://www.engin.umich.edu/dept/che/research/glotzer/index.html

For more on Glotzer: http://www.engin.umich.edu/dept/cheme/people/glotzer.html

For more information about chemical engineering: http://www.engin.umich.edu/dept/cheme/

Nano Letters: http://pubs.acs.org/journals/nalefd/

The U-M College of Engineering is celebrating its 150th anniversary this year, and is consistently ranked among the top engineering schools in the world. The college is comprised of 11 academic departments: aerospace engineering; atmospheric, oceanic and space sciences; biomedical engineering; chemical engineering; civil and environmental engineering; electrical engineering and computer science; industrial and operations engineering; materials science and engineering; mechanical engineering; naval architecture and marine engineering; and nuclear engineering and radiological sciences. Each year the college enrolls more than 7,000 undergraduate and graduate students and grants about 1,200 undergraduate degrees and 800 masters and doctoral degrees. To learn more, visit http://www.engin.umich.edu.


Story Source:

The above story is based on materials provided by University Of Michigan. Note: Materials may be edited for content and length.


Cite This Page:

University Of Michigan. "Researchers Show How To Assemble Building Blocks For Nanotechnology." ScienceDaily. ScienceDaily, 24 August 2004. <www.sciencedaily.com/releases/2004/08/040819082902.htm>.
University Of Michigan. (2004, August 24). Researchers Show How To Assemble Building Blocks For Nanotechnology. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2004/08/040819082902.htm
University Of Michigan. "Researchers Show How To Assemble Building Blocks For Nanotechnology." ScienceDaily. www.sciencedaily.com/releases/2004/08/040819082902.htm (accessed October 24, 2014).

Share This



More Matter & Energy News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins