Featured Research

from universities, journals, and other organizations

Home Computers Aid Efforts To Develop New Medications, Stanford Researcher Reports

Date:
August 26, 2004
Source:
Stanford University Medical Center
Summary:
Could your home computer help cure Alzheimer's disease? Vijay Pande, PhD, assistant professor of chemistry and of structural biology at Stanford University, believes the answer may be yes. He's devised a way to identify potential drug compounds by using a network of more than 150,000 home computers and some innovative algorithms.

PHILADELPHIA – Could your home computer help cure Alzheimer's disease?

Vijay Pande, PhD, assistant professor of chemistry and of structural biology at Stanford University, believes the answer may be yes. He's devised a way to identify potential drug compounds by using a network of more than 150,000 home computers and some innovative algorithms. He said the method accurately predicts how well molecules will bind to a given protein. Proteins are the ubiquitous workhorses of living systems and most diseases can be traced to protein malfunctions of one kind or another, so designing a compound that binds to a particular protein is an early step in drug development.

Pande will present his method Aug. 25 at the "High Performance Computing in Computational Chemistry" session at the American Chemical Society's national meeting in Philadelphia.

"For almost 20 years, people have been talking about doing drug design computationally, but the real challenge has been getting sufficient accuracy," Pande said. "Our main goal was to come up with methods to really push that accuracy to the point at which our methods are pharmaceutically useful."

In the past, Pande said, computer predictions of binding strength between molecules and targeted proteins have been off by as much as 4 to 6 kilocalories per mol, rendering them essentially useless. But when he tested his new method by calculating some bonding energies that are already known, the results were accurate to within 1 kilocalorie per mol. "I think we're at the point where pharmaceutical companies start to get interested," he said.

To get those results, he tapped into Folding@Home, a global network of more than 150,000 home computers that run computations in the background, pooling their results via the Internet to create a resource with "supercomputing power greater than all the supercomputing centers combined," in Pande's words. He set up the network in 2000 to study protein folding and needed its power for this experiment because accurately predicting bonding energy requires "sampling" multiple conformations of a protein, a computationally demanding process. He also developed algorithms that would enable the processors to work together efficiently to achieve a common goal. Pande said this distributed-computing approach could be used to design new classes of antibiotics. And, as part of a current Folding@Home calculation on a protein critical to Alzheimer's development, he hopes to identify molecules that would bind to the protein, pointing the way toward possible treatments.

Few researchers have a resource like Folding@Home at their fingertips, although some other projects (such as SETI@home, which searches for extraterrestrial intelligence) are using the power of distributed computing. But Pande said his method could still have broad applications. The benefits of speeding up drug development could easily outweigh the cost of a multimillion-dollar supercomputer to a pharmaceutical company, he said. Also, several pharmaceutical companies are already harnessing the computers within their organization, much as Folding@Home does on a worldwide scale. As for academics, their time will come. "One way to think of Folding@Home is as a time machine where we can do the sort of computational work now that would be very easy for any researcher to do in perhaps 10 years. And we can develop these methods and test them now," he said.

The method would not just speed up drug development but also could change it fundamentally. Pande said chemists are reluctant to test molecules that are hard to synthesize, but "one of the beautiful things about computational functions is that the synthesis is trivial. And so we can do the hard work – we can study the things that would be hard to investigate just synthetically and then make suggestions for which ones should be followed up. I think it may open the door to a new range of therapeutics that we just can't access very readily right now."

### His research was funded by the National Institutes of Health, the National Science Foundation and the Camille and Henry Dreyfus Foundation Inc.

Stanford University Medical Center integrates research, medical education and patient care at its three institutions -- Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children's Hospital at Stanford. For more information, please visit the Web site of the medical center's Office of Communication & Public Affairs at http://mednews.stanford.edu.


Story Source:

The above story is based on materials provided by Stanford University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Stanford University Medical Center. "Home Computers Aid Efforts To Develop New Medications, Stanford Researcher Reports." ScienceDaily. ScienceDaily, 26 August 2004. <www.sciencedaily.com/releases/2004/08/040826090745.htm>.
Stanford University Medical Center. (2004, August 26). Home Computers Aid Efforts To Develop New Medications, Stanford Researcher Reports. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2004/08/040826090745.htm
Stanford University Medical Center. "Home Computers Aid Efforts To Develop New Medications, Stanford Researcher Reports." ScienceDaily. www.sciencedaily.com/releases/2004/08/040826090745.htm (accessed April 24, 2014).

Share This



More Computers & Math News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Monkeys Are Better At Math Than We Thought, Study Shows

Monkeys Are Better At Math Than We Thought, Study Shows

Newsy (Apr. 23, 2014) A Harvard University study suggests monkeys can use symbols to perform basic math calculations. Video provided by Newsy
Powered by NewsLook.com
High Court to Hear Dispute of TV Over Internet

High Court to Hear Dispute of TV Over Internet

AP (Apr. 22, 2014) The future of Aereo, an online service that provides over-the-air TV channels, hinges on a battle with broadcasters that goes before the U.S. Supreme Court on Tuesday. (April 22) Video provided by AP
Powered by NewsLook.com
Aereo Takes on Broadcast TV Titans in Supreme Court Today

Aereo Takes on Broadcast TV Titans in Supreme Court Today

TheStreet (Apr. 22, 2014) Aereo heads to the Supreme Court today to fight for its right to stream broadcast TV over the Internet -- against broadcasters who say the start-up infringes upon copyright law. TheStreet Deputy Managing Editor Leon Lazaroff explains the importance of the case in the TV industry and details what the outcome of it could mean for broadcasters and for cloud storage services -- as Aereo allows its subscribers to not just watch live TV shows but also store content to a DVR in the cloud. Video provided by TheStreet
Powered by NewsLook.com
Lytro Introduces 'Illum,' A Professional Light-Field Camera

Lytro Introduces 'Illum,' A Professional Light-Field Camera

Newsy (Apr. 22, 2014) The light-field photography engineers at Lytro unveiled their next innovation: a professional DSLR-like camera called "Illum." Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins