Featured Research

from universities, journals, and other organizations

Decoupling The Control Of Brain Cancer Cells To Find Better Treatments

Date:
September 15, 2004
Source:
University Of Pennsylvania Medical Center
Summary:
When he's not in the operating room performing surgery, Donald M. O'Rourke, M.D., Associate Professor of Neurosurgery at the University of Pennsylvania School of Medicine is fighting brain tumors from the research laboratory bench. He and colleagues are making inroads to understanding the basic molecular biology that makes brain tumors so hard to treat.

Philadelphia, PA -- When he's not in the operating room performing surgery, Donald M. O'Rourke, M.D., Associate Professor of Neurosurgery at the University of Pennsylvania School of Medicine is fighting brain tumors from the research laboratory bench. He and colleagues are making inroads to understanding the basic molecular biology that makes brain tumors so hard to treat. An estimated 41,000 new cases of primary brain tumors are expected to be diagnosed in 2004, according to the American Brain Tumor Association.

Most recently, O'Rourke and Gurpreet S. Kapoor, PhD, Research Associate in O'Rourke's laboratory, have discovered that two proteins sitting on the surface of cells are the interconnected switches for turning uncontrolled cell growth on or off in the brain and other tissues. These coupled proteins are the Epidermal Growth Factor Receptor (EGFR) and the Signal Regulatory Proteiná1 (SIRPá1). They report their findings in the September 15 issue of Cancer Research.

In past work, O'Rourke and colleagues found that if EGFR was activated, cancer cells tended to survive longer and migrate to unaffected parts of the brain to spread the cancer. In over 50 percent of glioblastomas – one type of brain cancer that is the leading cause of cancer-related deaths in males aged 20-39 – too much EGFR is produced. In other glioblastomas, too much of a variant called EGFRvIII is also produced, which is linked to poor survival and resistance to treatment in some brain-cancer patients.

"Most of my translational efforts are targeted at this variant form of EGFR since no treatments are out there for glioblastomas," says O'Rourke. "We believe that development of malignancy in the brain is not simply related to cell division; it's a combined process that involves cell division, cell survival, cell migration and movement, and ultimately angiogenesis – the building of new blood vessels in tumors." All four of these processes occur at the same time. Many of the conventional chemotherapies for brain tumors are directed at stopping cell division, which makes these therapies not completely successful.

Using human glioblastoma cells, they found that when another protein called SHP-2 is bound to EGFR, the cell goes into an overactive state, resulting in cancerous growth. However, when SHP-2 is bound to SIRPá1, uncontrolled cell growth is stopped. "This is probably the normal state for a brain cell," says O'Rourke.

O'Rourke showed in earlier work that when SIRPá1 is activated in cancer cells it can inhibit cell growth and eventually kill them. In the present study, though, O'Rourke and Kapoor demonstrate that when EGFR is turned on, the genetic machinery to produce SIRPá1 is shut down, effectively bypassing the cell's natural ability to control unchecked growth. Another way a cancer cell circumvents the brakes on reproducing is to sequester SHP-2 away from SIRPá1, so the cell keeps on dividing.

Many of the newer cancer therapies inhibit EGFR activation, which is an indirect way of treating cancer. Stimulating SIRPá1 may be a more direct way to stop cancer because that receptor is a naturally occurring way that the body inhibits cancerous growth. "We may then have a greater chance at beating brain cancer than by inhibiting EGFR in a cell that already has an abundance of EGFR in it," says O'Rourke. Future efforts by O'Rourke's laboratory will be directed at finding combinations of inhibitors that block brain cancer cell migration, which will make all local therapies – including surgery – more effective by confining the cancer to a particular location.

This research was funded by the National Institutes of Health, The Department of Veterans Affairs, and The Brain Tumor Society.


Story Source:

The above story is based on materials provided by University Of Pennsylvania Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

University Of Pennsylvania Medical Center. "Decoupling The Control Of Brain Cancer Cells To Find Better Treatments." ScienceDaily. ScienceDaily, 15 September 2004. <www.sciencedaily.com/releases/2004/09/040915111932.htm>.
University Of Pennsylvania Medical Center. (2004, September 15). Decoupling The Control Of Brain Cancer Cells To Find Better Treatments. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2004/09/040915111932.htm
University Of Pennsylvania Medical Center. "Decoupling The Control Of Brain Cancer Cells To Find Better Treatments." ScienceDaily. www.sciencedaily.com/releases/2004/09/040915111932.htm (accessed July 24, 2014).

Share This




More Health & Medicine News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Idaho Boy Helps Brother With Disabilities Complete Triathlon

Idaho Boy Helps Brother With Disabilities Complete Triathlon

Newsy (July 23, 2014) — An 8-year-old boy helped his younger brother, who has a rare genetic condition that's confined him to a wheelchair, finish a triathlon. Video provided by Newsy
Powered by NewsLook.com
Thousands Who Can't Afford Medical Care Flock to Free US Clinic

Thousands Who Can't Afford Medical Care Flock to Free US Clinic

AFP (July 23, 2014) — America may be the world’s richest country, but in terms of healthcare, the World Health Organisation ranks it 37th. Thousands turned out for a free clinic run by "Remote Area Medical" with a visit from the Governor of Virginia. Duration: 2:40 Video provided by AFP
Powered by NewsLook.com
Stone Fruit Listeria Scare Causes Sweeping Recall

Stone Fruit Listeria Scare Causes Sweeping Recall

Newsy (July 22, 2014) — The Wawona Packing Company has issued a voluntary recall on the stone fruit it distributes due to a possible Listeria outbreak. Video provided by Newsy
Powered by NewsLook.com
Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Newsy (July 22, 2014) — The 83 new genetic markers could open dozens of new avenues for schizophrenia treatment research. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins