Featured Research

from universities, journals, and other organizations

Amyloid Fibers Sprout One Step At A Time

Date:
September 28, 2004
Source:
Howard Hughes Medical Institute
Summary:
Researchers have combined sophisticated biochemical and imaging techniques to get a glimpse of the stepwise assembly of amyloid fibers in a yeast prion protein. Their findings suggest that these structured fibers form in competition with the amorphous globules that some believe may cause toxicity in amyloid diseases such as Alzheimer's and Parkinson's.

Researchers have combined sophisticated biochemical and imaging techniques to get a glimpse of the stepwise assembly of amyloid fibers in a yeast prion protein. Their findings suggest that these structured fibers form in competition with the amorphous globules that some believe may cause toxicity in amyloid diseases such as Alzheimer's and Parkinson's. The researchers say this may have important implications for those designing drugs to prevent formation of the brain-damaging proteins in those diseases.

Related Articles


The researchers reported their findings in the October 2004 issue of the Public Library of Science Biology. They were led by Howard Hughes Medical Institute investigator Jonathan S. Weissman at the University of California, San Francisco. HHMI investigator Ronald D. Vale, also of UCSF, was a co-author of the article.

Working in yeast, Weissman and his colleagues investigated the mechanism by which a prion protein assembles individual polypeptides into long amyloid fibers. These fibers are similar to the amyloid plaques that clog the brains of patients with Alzheimer's or Parkinson's disease.

Unlike bacteria and viruses, prions consist only of aberrant proteins that misfold into forms that, in turn, induce normal proteins to misfold. In mammalian prion infections, these abnormal, insoluble proteins trigger protein clumping, producing a plaque that can kill brain cells. In humans, clumping causes fatal brain-destroying diseases such as Creutzfeldt-Jakob disease and kuru; in animals it causes bovine spongiform encephalopathy (mad cow disease) and scrapie.

In the yeast cells Weissman and his colleagues used as research models, however, the insoluble prion merely alters a cell's metabolism. Besides offering a model for studying prions, the yeast system also provides an excellent model for the growth and aggregation of amyloid protein, said Weissman. Studying this process could have important implications for understanding amyloid diseases, he said.

Initial efforts to understand amyloid formation compared the process to the formation of the cell's cytoskeleton, – a better understood mechanism known as nucleation-polymerization, in which the cytoskeletal proteins (actin and tubulin) coalesce into long fibers. Experiments from a number of labs, however, revealed that this process could not explain amyloid formation.

Amyloid formation was also associated with the transient accumulation of intermediate molecules that have been implicated in causing disease. "The process of forming amyloids seems to be implicated in disease perhaps as much as the actual aggregates themselves," said Weissman. "So understanding why some proteins form amyloids and aggregate, and under what conditions that occurs, and the intermediate processes involved, is critical in determining what is toxic about amyloid and how it might be possible to affect the pathology it causes. Yet despite the importance of this process, we know little about the underlying mechanism by which amyloid forms and grows."

For example, said Weissman, evidence is accumulating that it is not the plaque itself that is toxic, but rather the smaller and more amorphous oligomers that typically accompany plaque formation. But why such oligomers form and what role they play in making amyloid plaques was unknown.

Weissman and his colleagues sought to understand the dynamics of how the amyloid puzzle pieces assemble themselves. They analyzed the timing of the yeast prion protein assembly, and how that varied with different concentrations of the fiber and of the individual units, or monomers, that add to the growing fibers. The researchers also explored a particularly puzzling feature of amyloid formation: the fact that agitation dramatically accelerates the process.

Drawing on expertise in the Vale laboratory, the scientists complemented these indirect studies with "single-molecule fluorescence technology" to observe fiber growth directly. In this technique, an immobilized fiber is first tagged with one fluorescent molecule. When shorter amyloid segments or monomers are tagged with a fluorescent molecule of a different color and added to the immobilized fiber, researchers can watch the growth of the fiber.

The analytical approaches revealed that the yeast amyloid fibers grow by the addition, one by one, of individual monomers -- rather than assembly of amorphous, globular oligomers. Thus, said Weissman, if the oligomeric globules are, indeed, the toxic molecules, they form in competition with the structured fibers, rather than being key intermediates in fiber formation. Such a possibility could have implications for treating amyloid diseases such as Alzheimer's and Parkinson's, he said.

"Investigators are now screening for drugs that would prevent amyloid from forming, to treat these disorders," said Weissman. "While it is quite speculative at this point, if such drugs favored the production of more oligomers, which are toxic, then those drugs could actually have the opposite effect than was intended. Conversely, drugs that encourage the rapid formation of a relatively inert and stable amyloid might deplete the toxic oligomers and therefore be beneficial," he said.

Weissman emphasized that basic studies of amyloid formation must be extended beyond the yeast prion model before the monomer-addition mechanism can be considered a general one. Thus, he and his colleagues are now studying the mechanism of formation of other amyloid proteins, including the molecular details of how individual monomers bind to a growing fibril.


Story Source:

The above story is based on materials provided by Howard Hughes Medical Institute. Note: Materials may be edited for content and length.


Cite This Page:

Howard Hughes Medical Institute. "Amyloid Fibers Sprout One Step At A Time." ScienceDaily. ScienceDaily, 28 September 2004. <www.sciencedaily.com/releases/2004/09/040921084443.htm>.
Howard Hughes Medical Institute. (2004, September 28). Amyloid Fibers Sprout One Step At A Time. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2004/09/040921084443.htm
Howard Hughes Medical Institute. "Amyloid Fibers Sprout One Step At A Time." ScienceDaily. www.sciencedaily.com/releases/2004/09/040921084443.htm (accessed October 25, 2014).

Share This



More Mind & Brain News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Academic Scandal Shocks UNC

Academic Scandal Shocks UNC

AP (Oct. 23, 2014) A scandal involving bogus classes and inflated grades at the University of North Carolina was bigger than previously reported, a new investigation found. (Oct. 23) Video provided by AP
Powered by NewsLook.com
Working Mother Getaway: Beaches Turks & Caicos

Working Mother Getaway: Beaches Turks & Caicos

Working Mother (Oct. 22, 2014) Feast your eyes on this gorgeous family-friendly resort. Video provided by Working Mother
Powered by NewsLook.com
What Your Favorite Color Says About You

What Your Favorite Color Says About You

Buzz60 (Oct. 22, 2014) We all have one color we love to wear, and believe it or not, your color preference may reveal some of your character traits. In celebration of National Color Day, Krystin Goodwin (@kyrstingoodwin) highlights what your favorite colors may say about you. Video provided by Buzz60
Powered by NewsLook.com
First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

Newsy (Oct. 21, 2014) A medical team has for the first time given a man the ability to walk again after transplanting cells from his brain onto his severed spinal cord. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins