Featured Research

from universities, journals, and other organizations

Early Life Stress Can Inhibit Development Of Brain-cell Communication Zones

Date:
October 21, 2004
Source:
University Of California Irvine
Summary:
High stress levels during infancy and early childhood can lead to the poor development of communication zones in brain cells -- a condition found in mental disorders such as autism, depression and mental retardation.

High stress levels during infancy and early childhood can lead to the poor development of communication zones in brain cells -- a condition found in mental disorders such as autism, depression and mental retardation.

These are the findings of Dr. Tallie Z. Baram and her collaborators at the UC Irvine College of Medicine, Neurocrine Biosciences, Inc., and the Max Planck Institute of Psychiatry. For the first time, the researchers have identified how increased amounts of a key messenger for stress, the neuropeptide CRH, can inhibit the normal growth of dendrites, which are branch-like protrusions of neurons that send and receive messages from other brain cells.

The researchers believe CRH ultimately may be responsible for these poorly developed zones in brain cells. Results of their study appear in the current online early edition of the Proceedings of the National Academy of Sciences.

"These findings may prove to be highly relevant for understanding the origins of several human brain disorders, and they also point to some potential preventive treatments," said Baram, the Danette Shepard Chair in Neurological Studies. "The activation of stress hormones and molecules seems to initiate a complex cascade of brain effects that is related to depression and dementia. This study reveals a novel role of CRH in this cascade."

Communication among brain cells is the foundation of cognitive processes such as learning and memory. In several human brain disorders where learning and similar thought processes are abnormal, dendrites in the hippocampus -- where learning and memory occurs -- have been found to be small or poorly developed. Normally, CRH is found in the hippocampus, and small amounts that are released during stress may improve cellular communication.

But when the investigators in this study grew the hippocampus of baby rats in a dish and administered higher doses of CRH to the cultured hippocampus, the dendrites matured poorly. In turn, the group found exuberant dendritic growth in hippocampus tissue in which CRH could not exert any effect because the CRH receptor was eliminated via genetic engineering.

"Thus, we had two lines of evidence suggesting that too much CRH in the developing hippocampus might lead to the abnormal dendrites," said Baram, a pediatric neurologist and neuroscientist. "The good news is that we were able to prevent this effect in the lab."

To do this, the researchers used a selective blocker of the CRH receptors and were able to reverse the actions of CRH, which led to well-developed brain-cell dendrites. But Baram warns that much more research is needed to see if this blocker can work in animal models or in humans.

The Baram group is continuing its study to learn if CRH is involved in adult dendrite atrophy. In previous studies, several research groups have found that chronic stress causes dendrite atrophy in adults, but it is not known if CRH plays a role.

Yuncai Chen, Roland A. Bender, Kristen L. Brunson and Jörn K. Pomper from the Baram group at UCI collaborated with Dimitri E. Grigoriadis of Neurocrine and Wolfgang Wurst of the Max Planck Institute on the study. The National Institutes of Health provided funding support.

###

About the University of California, Irvine

The University of California, Irvine is a top-ranked public university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with approximately 24,000 undergraduate and graduate students and about 1,300 faculty members. The third-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3 billion.


Story Source:

The above story is based on materials provided by University Of California Irvine. Note: Materials may be edited for content and length.


Cite This Page:

University Of California Irvine. "Early Life Stress Can Inhibit Development Of Brain-cell Communication Zones." ScienceDaily. ScienceDaily, 21 October 2004. <www.sciencedaily.com/releases/2004/10/041021082832.htm>.
University Of California Irvine. (2004, October 21). Early Life Stress Can Inhibit Development Of Brain-cell Communication Zones. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2004/10/041021082832.htm
University Of California Irvine. "Early Life Stress Can Inhibit Development Of Brain-cell Communication Zones." ScienceDaily. www.sciencedaily.com/releases/2004/10/041021082832.htm (accessed October 21, 2014).

Share This



More Health & Medicine News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

CDC Revamps Ebola Guidelines After Criticism

CDC Revamps Ebola Guidelines After Criticism

Newsy (Oct. 21, 2014) — The Centers for Disease Control and Prevention have issued new protocols for healthcare workers interacting with Ebola patients. Video provided by Newsy
Powered by NewsLook.com
First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

Newsy (Oct. 21, 2014) — A medical team has for the first time given a man the ability to walk again after transplanting cells from his brain onto his severed spinal cord. Video provided by Newsy
Powered by NewsLook.com
CDC Issues New Ebola Guidelines for Health Workers

CDC Issues New Ebola Guidelines for Health Workers

Reuters - US Online Video (Oct. 21, 2014) — The U.S. Centers for Disease Control and Prevention has set up new guidelines for health workers taking care of patients infected with Ebola. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
'Cadaver Dog' Sniffs out Human Remains

'Cadaver Dog' Sniffs out Human Remains

AP (Oct. 21, 2014) — Where's a body buried? Buster's nose can often tell you. He's a cadaver dog, specially trained to find human remains and increasingly being used by law enforcement and accepted in courts. These dogs are helping solve even decades-old mysteries. (Oct. 21) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins